Annex 1: Resources to be committed to the 2nd RAWFIE Open Call The following tables describe the resources, which will be made available to the 2nd Open Call by each testbed.

Testbed	Resources Available	UxV/activity type	Does your experiment
			testbed (Y/N)?
HAI	HAI's industrial complex is located in Tanagra around 65 km North of city of Athens. The test-bed facility consists of a runway of around 500m which can be used for takeoff of wing UAVs. The available area will be appropriate for launching up to 10 UAVs (wing or helicopter)	UAV Outdoor	
HMOD	Salamina straits, a narrow passage between Attica and the island of Salamina, in which the naval traffic is heavily regulated. The neighboring Naval Base of Skaramagkas is able to receive, inspect, launch and store USVs. It provides military grade emergency services (i.e. crash, fire or rescue) and has the appropriate radar facilities and systems for tracking and surveillance. In the context of the project, extra telemetry and control facilities will be set in order to accommodate the needs of the experiments.	USV Outdoor	
CATUAV	CATUAV / BCN DRONE CENTER provides testbed facilities consisting in a segregated air space of 25 square km, an airfield, a bioclimatic building and rural terrain of 14 Ha ready to install and deploy a wide diversity of components and infrastructures, with no restrictions or limitations, that can cover a wide diversity of experiments related to UAVs and UGVs.	UAV Outdoor CATUAV /BCN DRONE CENTER includes delivery of 2 UAVs for RAWFIE exclusive use as UAV nodes.	
RT-ART	 The testbed is ETOPIA, a center for Art and Technology, (16,000 m2) located in Zaragoza, Spain, and consists of three buildings linked together. There are five testbed options: S1 - Entrance Hall of ETOPIA building (425.91 m2). S2 - Experimental gallery (around 800 m2). S3 - Residence. Two floors of total area around 375 m2. S4 - Showroom (390 m2). S5 - Building terrace (600 m2) 	UGV Indoor The testbed includes 4 TurtleBot 2	

Table 1: Testbeds to be made available for the 2nd Open Call

MarEH4	DFKI RIC Maritime Exploration Hall (MarEH) in	USV
EU	Bremen, Germany. This large (23x19x8m)	Indoor
	basin is filled with salt water and allows to test	
	surface and underwater vehicles	
CESA	CESA provides 4 outdoor aerial testing sites :	UAV
DRONES	1. Camp de Souge and HERM	Outdoor
	The main and permanent flight test area is located	
	in Souge, near Bordeaux. It's a flexible restricted	
	area with protection from industrial spying: 2800	
	ha reserved airspace, 2 000 feet above mean sea	
	level and 800m paved runway.	
	2. HERM	
	An access to this test area is given on demand,	
	located in Herm (near Dax).	
	3. Vendays-Montalivet	
	The third flight test area is located at VENDAYS	
	Montalivet. It's a restricted military area, located	
	on the Atlantic coast line, typically used for the	
	training of Defense Ministry's General Delegation	
	for Armaments (DGA) : 50 km of elongation and 7	
	km large allow long flight out of sight, 3 000 feet	
	above mean sea and 600m x 15 m paved runway.	
	4. Biscarrosse	
	The last testbed area is located at 85km S/W of	
	Bordeaux, on a civil air area, under security of civil	
	aviation, and allows 15 km of elongation, and 5 km	
	large, 600m x 30 m paved runway and 800 m x 30	
	m grass runway.	
Aeroloo	UAV simulation infrastructure based on a	UAV (virtual)
р	hardware-in-the-loop and software-inthe-	Virtual
	loop approach, which will allow users to perform	
	experiments in a flexible way, 24x7, without	
	requiring any human on-site support	

Table 2: UxV devices to be made available for the 2nd Open Call

UxV Devices	Resources Available	Specification	Number (#) of nodes needed for the experiment
NIRIIS	10 USV	 Boat size (L x W x H): 1,3mm x 40mm x 30mm Gross Weight: 9kg Material: epoxy resin fiberglass Power: High Power Lithium Polymer Battery Motor: Water-cooled brushless 	

		 Operational range: 1000m 	
		Endurance: Un to 2 hours	
		 Sneed: Un to 30km/b (8m/s) 	
		 Bayload capacity: Up to 10kg 	
		• Payload capacity. Op to tokg	
		Steering: Off-set Rudder	
		Iviain Communication Frequencies: Iviain	
		• Video Downlink: 1.2GHz	
		• EO/Day Camera	
		IR Thermal Camera	
PlaDyFleet	10 USV	 Processing capabilities and data storage: 	
		NUC Intel Core i5. 1.6-2.7 GHz dual core.	
		3MB cache; SSD 120GB	
		 Size and dimensions: 756x756x280 mm 	
		• Weight: 25 kg	
		 Pavload: 5 kg + water displacement 	
		Battery: 12 V 600Wh AGM gel battery	
		Minimum and maximum autonomy: 2 -8	
		hours	
		• Sensors:	
		 Navigation – GNSS: Real Time 	
		Kinematic Global Positioning System	
		(BTK GPS)	
		- Navigation – Inertial: Inertial	
		Measurement Unit (IMU)	
		Camera: Above water HD camera	
		installed on all USVs	
		 Underwater camera: Installed on one 	
		USV	
		 Echo sounder: Single beam echo- 	
		sounder installed on one USV	
		 Control software: ROS Indigo running 	
		Linux Ubuntu 14.04	
		 Compatibility with Apache Kafka 	
		architecture	
VENAC	12 networked	 Processing capabilities 	
	UAVs in 2 different	- Model: Raspberry Pi 3 Model B	
	configurations:	- CPU: ARMv8 Cortex-A53 BCM2837 64bit	
	- 8 ultra-light	- Cores: quad-core	
	Hyper Efficient	- Speed: 1.2GHz	
	UAVs that can	- RAM: 1GB	
	hover for 90	- Co-Processor: Dual Core VideoCore IV	
	mins and	Multimedia 3D	
	- 4 Heavy	Sensor types	
	Endurance UAVs	- GPS GNSS: U-blox M8N GPS	
	that can lift up	- Dual IMU: 2 x Inertial Measurement	

	to 4kgs or hover	Units, MPU9250 9DOF and LSM9DS1	
	for 120 mins	9DOF	
		- Barometer: 1 x MS5611 altitude sensing	
		with 10cm resolution	
		- Variometer: 1x-700~10000m with 0.1m	
		(high precision version) resolution	
		- Temperature sensor: FrSky TEMS-01 for	
		system temperature	
FLEXUS	10 USV	 Processing capabilities (type of 	
		processors, number of cores, speed):	
		1.2GHz quad-core ARMv8 CPU or 2GHz	
		quad-core ARM A15 + 1.5GHz quad-core	
		ARM v7 + single board computer for	
		communications	
		 Size and dimensions: 1m long, 0.5m 	
		• Weight: 10kg (approx_depending on	
		WiFi solution)	
		 Payload capability: 10kg 	
		 Battery: 200 Wh, lithium polymer 	
		 Number and type or sensors: GPS 	
		receiver, IMU, video camera	
		 Number and type of integrated network 	
		components and supported	
		communication interfaces: 2 WiFi	
		interface cards + 2 omni-directional	
		antennas	
		 Minimum and maximum autonomy of 	
		the device: 1.2 hours @ 2m/s (typical),	
		4.5 hours @ 1m/s (typical)	
		 Auto-return capability (return to the base station automatically) 	
		 Ability of the vehicle to operate as an 	
		access point	
		• (Remote) Control interface:	
		QGroundControl, MAVLINK protocol	
		 Operating Systems Linux / OpenWRT 	
		• Over-the-air programming capabilities:	
		Yes, through Wi-Fi	
		 Provision of collision avoidance 	
		mechanism: Optional	
		 Compatibility with Apache Kafka 	
		architecture	
		 Data storage of the vehicle: Minimum 	
		16GB storage, extendable via USB drive	
		 Support of "safe mode" operation 	
		 Localization capabilities (e.g., GNSS): 	

	GPS	
	• Ability to operate in	
	indoor/outdoor/mixed	
	environments	
	• Compliance with standards: MAVLINK,	
	JAUS, ROS	
	 Operational conditions (e.g., day/night) 	
	and temperature limitations: Night and	
	day. Recommended maximum external	
	temperature is 40 degrees Celsius	

Annex 2: Experiment Work Plan and Timing

The submitted proposals referring to Activity 3 (RAWFIE-OC2-EXP-SCI) and Activity 4 (RAWFIE-OC2-EXP-SCI-SME) should sufficiently describe the experiment procedure, by covering the following sections:

- 1. Experiment design:
 - Description of the experiment
 - Use of the RAWFIE offered facilities
 - Why the RAWFIE testbed is needed for the experiment
 - Description of test scenarios, measurements and expected results of the experiment.
 - In the case of new testbed extensions, describe who will implement and deploy the extensions? (the RAWFIE partners or the proposer?)

2. Experiment Setup

- Describe the experiment procedure.
- Which components will be used
- Implementation of the software to be used for the experiment
- 3. Experiment execution
 - Experiment running and evaluation of the results
- 4. Reporting
 - Reporting on the experiment outcome
 - Recommendations for improvements on the RAWFIE platform
- 5. Dissemination
 - Dissemination actions (conferences, workshops, FIRE events, etc.)
 - Set up of Demonstrations to be used for further promotion of the RAWFIE facilities

Timing:

- Duration: 12 months
- Major milestones:

- o Experiment design
- o Experiment set-up
- Experiment execution
- Experiment feedback
- Dissemination, showcase