
 D6.3: RAWFIE Operational Platform Testing and Integration Report (b)

1

Road-, Air- and Water-based Future Internet

Experimentation

Project Acronym: RAWFIE

Contract Number:

645220

Starting date: Jan 1st 2015 Ending date: Dec 31st 2018

Deliverable Number
and Title

D6.3: RAWFIE Operational Platform Testing and Integration Report

Confidentiality PU Deliverable type1 R

Deliverable File D6.3 Date 30.04.2016

Approval Status2 WP Leader, 1st Reviewer,

2nd Reviewer
Version 1.0

Contact Person Philippe Dallemagne Organization CSEM

Phone E-Mail Philippe.Dallemagne@csem.ch

1 Deliverable type: P(Prototype), R (Report), O (Other)
2 Approval Status: WP leader, 1st Reviewer, 2nd Reviewer, Advisory Board

2

AUTHORS TABLE

Name Company E-Mail

Kakia Panagidi UoA kakiap@di.uoa.gr

Kostas Kolomvatsos UoA kostasks@di.uoa.gr

Konstantinos Kolomvatsos UoA kostasks@di.uoa.gr

Vasil Kumanov Aberon Vasil.kumanov@aberon.bg

Marcel Heckel Fraunhofer marcel.heckel@ivi.fraunhofer.de

Kiriakos Georgouleas HAI Georgouleas.Kiriakos@haicorp.com

Nikolaos Priggouris HAI PRIGGOURIS.Nikolaos@haicorp.com

Jason Ramapuran HES-SO jason-emmanuel.ramapuram@hesge.ch

Philippe Dallemagne CSEM Philippe.dallemagne@csem.ch

Damien Piguet CSEM Damien.Piguet@csem.ch

Giovanni Tusa IES g.tusa@iessolutions.eu

Miquel Cantero ROBOTNIK mcantero@robotnik.es

Ricardo Martins MST rasm@oceanscan-mst.com

REVIEWERS TABLE

Name Company E-Mail

Marcel Heckel Fraunhofer Marcel.Heckel@ivi.fraunhofer.de

Kakia Panagidi UOA kakiap@di.uoa.gr

DISTRIBUTION

Name / Role Company Level of

confidentiality3

Type of deliverable

Consortium PU R

3 Deliverable Distribution: PU (Public, can be distributed to everyone), CO (Confidential, for use by consortium

members only), RE (Restricted, available to a group specified by the Project Advisory Board).

 D6.3: RAWFIE Operational Platform Testing and Integration Report (b)

3

CHANGE HISTORY

Version Date Reason for Change Pages/Sections

Affected

0.1 01.03.2017 First draft All

0.2 27.03.2017 Version for contribution integration All

0.3 17.04.2017 Updated sections 3.4 and 3.5 Sections 3.4 and 3.5

0.4 28.04.2017 Version for internal review All

1.0 30.04.2016 Final version All

4

Abstract:

The objective of this deliverable is to report about the integration and testing of the RAWFIE system.

It presents the status of the interface tests and the verification tests as well as of the integration results.

It mentions the technicalities required for the consolidation of the RAWFIE components in a unified

platform. The results obtained during the experimentations and the specific tests are analysed to

identify and characterise the improvements and fixes to be brought to the prototype implementation

during the third development iteration. The integration roadmap lists the enhancements of the RAWFIE

operational platform based on the outcomes of the testing procedures and the deployments on the

operational sites. The document is the second release over the three phases/cycles defined in the

RAWFIE project.

This deliverable is based on the results of the tasks T6.1 and T6.2, on the work done in WP5, and on

the verification tests planning presented in D4.6.

Keywords: Integration, interface tests, verification tests, roadmap

 D6.3: RAWFIE Operational Platform Testing and Integration Report (b)

5

Table of Contents-

Table of Contents-.. 5

List of Figures .. 7

List of Tables .. 8

Part I: Executive Summary .. 14

Part II: Main Section .. 15

1 Introduction .. 15

1.1 Scope of D6.3 .. 15

1.2 Definitions ... 15

1.3 Relation to other deliverables .. 15

2 Integration & Testing.. 16

2.1 Approach ... 16

2.2 Methodology ... 16

2.2.1 Tests reporting format .. 19

2.3 Integration of external components ... 19

2.3.1 Interoperability with external SFA clients through the SFA Aggregation Manager

 19

2.3.2 Feedback from professional stakeholders .. 20

2.3.3 Integration of RAWFIE “newcomers” ... 21

2.4 Integration environment .. 21

2.4.1 ICT infrastructure... 21

2.4.2 Data repositories .. 22

2.4.3 Tools & techniques for integration .. 23

2.4.4 Message Bus .. 23

2.4.5 Integration of new UxVs .. 24

2.4.6 Integration of new Testbeds ... 24

 Results of the... 27

2.5 Integration Test ... 27

2.5.1 Front-end integration ... 29

2.5.2 Middle tier integration ... 33

2.5.3 Testbed & UxV integration .. 41

2.6 Verification scenarios results .. 44

2.6.1 Frontend Tier ... 44

6

2.6.2 Middle Tier (Services and Communication components) 66

2.6.3 Testbed Tier (Testbeds and Resources control components) 91

2.7 Benchmarking of different Message Bus topologies and configurations 119

2.7.1 Purpose ... 119

2.7.2 Scenarios and setup .. 119

2.7.3 Results .. 120

2.8 Deviations with respect to D6.1 .. 124

Part III: Conclusion & Roadmap ... 125

Part IV: Annex ... 126

Annex A Glossary ... 126

Annex B Requirements ... 132

References .. 134

 D6.3: RAWFIE Operational Platform Testing and Integration Report (b)

7

List of Figures

Figure 1: Overview of software interfaces provided by Middle Tier Services and the Master

Database, and used by Frontend Tier modules .. 17

Figure 2: Overview of software interfaces between Middle Tier components, and between

Middle Tier components and other system components.. 18

Figure 3: 1st RAWFIE environment integration .. 21

Figure 4: RAWFIE clones for the development infrastructure .. 22

Figure 5: Tools for integration ... 23

Figure 6: Mirroring architecture .. 24

Figure 7 – Round Trip Time metrics in scenario A ... 121

Figure 8: TX metrics in Scenario A ... 122

Figure 9: Mean Time for consuming messages in Scenarios B and C 123

Figure 10: Mean Time for leader broker to serve messages in Scenarios B and C 123

8

List of Tables

Table 1: interface interaction matrix .. 28

Table 2 -Interface types used in interface testing .. 29

Table 3: Test of the Web portal interfaces ... 29

Table 4: Test of the Wiki Tool interfaces .. 30

Table 5: Test of the Resource explorer interfaces ... 30

Table 6: Test of the Booking Tool interfaces .. 31

Table 7: Test of the Experiment Authoring Tool interfaces .. 31

Table 8: Test of the Experiment Monitoring Tool interfaces... 32

Table 9: Test of the System Monitoring Tool interfaces ... 32

Table 10: Test of the Visualisation Tool interfaces ... 32

Table 11: Test of the Data Analysis Tool interfaces.. 33

Table 12: Test of the EDL Compiler and Validator interfaces .. 34

Table 13: Test of the Experiment Validation Service interfaces ... 34

Table 14: Test of the User & Rights Service interfaces... 34

Table 15: Test of the Booking Service interfaces .. 34

Table 16: Test of the Launching service interfaces ... 35

Table 17: Test of the Experiment Controller interfaces ... 36

Table 18: Test of the Data Analysis Engine interfaces .. 36

Table 19: Test of System Monitoring Service interfaces ... 37

Table 20: Test of the Testbed Directory Service interfaces ... 38

Table 21: Test of the Visualisation Engine interfaces ... 41

Table 22: Test of the Tesbed Manager interfaces .. 42

Table 23: Test of the Monitoring Manager interfaces ... 42

Table 24: Test of the Resource Controller interfaces .. 43

Table 25: Test of the UxV Node interfaces ... 43

Table 26: Verification test of the Web Portal - Login/ Logout .. 45

Table 27: Verification test of the Web Portal – Language selection 45

Table 28: Verification test of the Web Portal – User management ... 46

Table 29: Verification test of the Wiki Tool – Component Help .. 47

Table 30: Verification test of the Wiki Tool – Editing .. 47

Table 31: Verification test of the Browse testbeds and UxVs and start booking 48

Table 32: Verification test of the Booking Tool Calendar View and its display options 49

Table 33: Verification test of the Booking Tool Calendar View Interactions 50

Table 34: Verification test of the Booking Tool Create Reservation 51

Table 35: Verification test of the Booking Tool Edit Reservation Actions 52

Table 36: Verification test of the in-Textual Editor Experiments definition 54

Table 37: Verification test of the Textual Editor Experiments Update 55

Table 38: Verification test of the in-Visual Editor Experiments Define 56

Table 39: Verification test of the in-Visual Editor Experiments Update 57

Table 40: Verification test of the Editor switching .. 58

Table 41: Verification test of the experiment Launchings... 59

Table 42: Verification test of the Visualisation of experiment status 60

 D6.3: RAWFIE Operational Platform Testing and Integration Report (b)

9

Table 43: Verification test of the Visualisation of system and UxV health status 60

Table 44: Verification test of the UxV navigation tool access and produced instructions

validation.. 61

Table 45: Verification test of the User request handling ... 61

Table 46: Verification test of the Geospatial data handling .. 62

Table 47: Verification test of the Geospatial data modification .. 62

Table 48: Verification test of the Experiment Controller communication 63

Table 49: Verification test of the Visualization Tool Interaction .. 63

Table 50: Verification test of the Camera interaction .. 64

Table 51: Verification test of the provision of an interface to the Analysis Engine by the

Analysis Tool ... 64

Table 52: Verification test of the ability of the Analysis Tool to query available data schemas

.. 65

Table 53: Verification test of the ability of the Analysis Tool to read results from the results

database .. 65

Table 54: Verification test of the resources information retrieval and resources search 66

Table 55: Verification tests for adding or removing a testbed facility 67

Table 56: Verification test of the registration or removal of a new UxV node into a testbed

facility .. 68

Table 57: Verification test of the testbeds information retrieval and testbeds search 69

Table 58: Verification test of the Experiments compilation .. 70

Table 59: Verification test of the Experiments validation ... 71

Table 60: Verification test of the Users & Rights Service login checking 71

Table 61: Verification test of the Users & Rights Service roles/rights checking 72

Table 62: Verification test of the user rights checks.. 72

Table 63: Verification test of Booking Service add reservation functionality 73

Table 64: Verification test of Booking Service edit reservation functionality 74

Table 65: Verification test of Booking Service approve reservation functionality 75

Table 66: Verification test of Booking Service reject reservation functionality 76

Table 67: Verification test of Booking Service delete reservation functionality..................... 77

Table 68: Verification test of Booking Service retrieve reservation(s) functionality 78

Table 69: Verification test of Booking Service check for conflicts functionality 78

Table 70: Verification test of Booking Service simultaneous reservations support 79

Table 71: Verification test of the Launching Service manual start (short term launching) 80

Table 72: Verification test of the Launching Service schedule (long term launching) 81

Table 73: Verification test of the Launching Service cancellation request 83

Table 74: Verification test of Launching Service simultaneous launching capability 84

Table 75: Visualisation engine user request handling ... 84

Table 76: Visualization engine geospatial data modification .. 85

Table 77: Visualization engine camera interaction .. 85

Table 78: Verification test of the ability of the Analysis Engine to query message bus streams

& schemas from the schema registry ... 86

Table 79: Verification test of the ability of the Analysis Engine to receive messages from the

Analysis Tool ... 87

10

Table 80: Verification test of the ability of the Analysis Engine to write data to the results

database .. 87

Table 81: Verification test of the System Monitoring ... 88

Table 82: Verification test of the System Monitoring Problem Notifications 88

Table 83: Verification test of the Accounting data collection ... 89

Table 84: Verification test of Experiment Controller workflow ... 90

Table 85: Verification test of Monitoring Activity .. 91

Table 86: Verification test of network interface switching due to connectivity problems 92

Table 87: Verification test of Connection and of Accuracy validation of the given Instructions

.. 93

Table 88: Verification test of Proximity component Backup communication 94

Table 89: Verification test of UxV retrieval using the communication system of the Proximity

component .. 95

Table 90: Verification test of Swarm motion using the Proximity component 95

Table 91: Verification test of Testbed Manager Experiment Handling 96

Table 92: Verification test of Experiment management without middle-tier connection 97

Table 93: Verification test of Check Testbed health status ... 98

Table 94: Verification test of Check the status of all services running at testbed level 99

Table 95: Verification test of UxV Return to base .. 100

Table 96: Verification test of the ability of the UxV to follow a route 101

Table 97: Verification test of Acquire sensor samples .. 103

Table 98: Verification test of Fidelity to commands ... 105

Table 99: Verification test of Continuous communication .. 107

Table 100: Verification test of Continuous communication .. 108

Table 101: Verification test of Secure communication ... 109

Table 102: Verification test of Real-time communication .. 110

Table 103: Verification test of UxV Device Management .. 111

Table 104: Verification test of the UxV connection .. 113

Table 105: Verification test of Sensor Data Acquisition 1 .. 114

Table 106: Verification test of Sensor Data Acquisition 2 .. 115

Table 107: Verification test of Waypoints Processed .. 118

Table 108: Sync and Burst cased tested in scenario A .. 120

Table 109: Requirements considered for the integration ... 132

 D6.3: RAWFIE Operational Platform Testing and Integration Report (b)

11

 The following table gives the abbreviations used across the RAWFIE projects in the

documents and deliverables.

 Table 1: Common abbreviations

Abbreviation Meaning

3D three-dimensional space

ACL Access Control List

AGL Above Ground Level

AHRS Attitude and Heading Reference System

AJAX Asynchronous JavaScript and XML

AM Aggregate Manager (of SFA)

AP Access Point

API Application Programming Interface

API Application programming interface

AT Aerial Testbed

AUV Autonomous underwater vehicle

B-VLOS Beyond Visual Line Of Sight

CA Certification Authority

CAA Civil Aviation Authority

CAO Cognitive Adaptive Optimization
CBNR Chemical Biological Nuclear Radiological

CEP Circular Error Probability

CPU Central Processing Unit

CSR Certificate Signing Request

DETEC Department of the Environment, Transport, Energy and Communication

DGCA Directorate General of Civil Aviation

DoA Description of Actions

EASA European Aviation Safety Agency

EC Experiment Controller

ECC Error Correction Code

ECV EDL Compiler & Validator

EDL Experiment Description Language

EDL Experiment Description Language

EER Experiment and EDL Repository

EU European Union

E-VLOS Extended Visual Line Of Sight

EVS Experiment Validation Service

FIRE Future Internet Research & Experimentation

FOCA Federal Office of Civil Aviation

FPS Frames Per Second

FPV First Person View

GAA German Aviation Act

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPIO General Purpose Input/Output

GPS Global Positioning System

GUI Graphical user interface

HD High Definition

HTTP Hypertext Transfer Protocol

HW Hardware

12

IAA Irish Aviation Authority

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IDE integrated development environment

IFR Instrument Flight Rules

IP Internet Protocol

ISO International Standards Organization

JDBC Java Database Connectivity

JSON JavaScript Object Notation

KPI Key Performance Indicator

KPI Key Performance Indicator

LBL Long Baseline

LDAP Lightweight Directory Access Protocol

LS Launching Service

MEMS MicroElectroMechanical System

MM Monitoring Manager

MSO Multi Swarm Optimization

MT Maritime Testbed

MOM Message Oriented Middleware

MVC Model View Controller

NAT Network Address Translation

NC Network Controller

NF Non Functional

ODBC Open Database Connectivity

OEDL OMF EDL

OMF cOntrol and Management Framework

OMF Orbit Management Framework

OML ORBIT Measurement Library

OS Operating System

OTA Over The Air

P2P Point to Point

PSO Particle Swarm Optimization

PTZ Pan Tilt Zoom

RC Resource Controller

RC Resource Controller

RE Requirement Engineering

REST Representational state transfer

RIA Research and Innovation Action

ROS Robot Operating System

ROV Remotely Operated Vehicle

RPA Remotely Piloted Aircraft

RPAS Remotely Piloted Aircraft System

RPS Remotely Piloted Station

RSpec SFA Resource Specification

SaaS Software as a Service

SAML Security Assertion Markup Language

SFA Slice-based Federation Architecture

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SQL Simple Query Language

SSO Single-Sign-On

SVN Apache Subversion

TM Testbed Manager

 D6.3: RAWFIE Operational Platform Testing and Integration Report (b)

13

TMS Testbed Manager Suite

TP Testbed Proxy

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UI User Interface

UML Unified Modelling Language

USV Unmanned Surface Vehicle

UUV Unmanned Underwater Vehicle

UxV Unmanned aerial/ground/surface/underwater Vehicle

VE Visualization Engine

VT Vehicular Testbed

VT Visualization Tool

WCS Web Coverage Service

WFS Web Feature Service

WMS Web Map Service

WPS Web Processing Service

WSDL Web Services Description Language

XMPP Extensible Messaging and Presence Protocol

Table 2 gives the notations commonly used across the present document.

Table 2: Notations

Notation Description

DX.Y Deliverable X.Y from the DoW

MSX Milestone X from the DoW

WPX Work package X from the DoW

OCX Open Call X

AX.Y Activity number Y in Phase X

DLX.Y Deadline number Y in Phase X

MX Project month number X

A glossary is located at the end of this document in Annex, p. 126.

14

Part I: Executive Summary

The objective of this deliverable is to report about the results obtained during the tests of the

interfaces of the RAWFIE components and of their integration into a unified and operational

system. It presents the status of the interface tests and the verification tests as well as of the

integration results, including the technicalities required for the consolidation of the RAWFIE

system and the identified enhancements of the RAWFIE platform based on the aforementioned

results. The integration roadmap mentions the target milestones and the enhancements of the

RAWFIE operational platform based on the outcomes of the testing procedures and the

deployments on the operational sites. The document is the second release over the three

phases/cycles defined in the RAWFIE project.

The document is organised into 4 parts. The second part (Part II) is the main section, which is

structured into two Chapters. Chapter 1 presents the scope of the document, some definitions

and abbreviations together with the relation to other RAWFIE deliverables. Chapter 2 describes

the various aspects of the integration and testing of the RAWFIE system. It describes the

approach and methodology used for describing, performing and reporting the tests and

integration verification. It is followed by the integration with external entities (mainly SFA),

the integration setup and the results of the tests of the interface and the verification tests

performed on the RAWFIE components and system. To make sure that the current RAWFIE

system meets the basic performance requirements, a section presents the measured

performance of the kafka message bus in a typical setup. A conclusion is drawn in Part III,

combined with a roadmap based on the results obtained from the previous steps and the

subsequent modifications and improvements.

 D6.3: RAWFIE Operational Platform Testing and Integration Report (b)

15

Part II: Main Section

1 Introduction

1.1 Scope of D6.3

The scope of this document is to present the results of the tests of the operational platform and

the status of the component integration.

1.2 Definitions

This document makes use of a number of specific terms, which the RAWFIE team understands

as defined below:

 Verification of a system is the task of determining that the system is built according to

its specifications (functionalities according to requirements and design specifications);

 Validation is the process of determining that the system actually fulfils the purpose for

which it was intended (according to the specification);

 Evaluation reflects the acceptance of the system by the end users and its performance

in the field, which eventually translates into usefulness (always according to user needs

and / or performances in the field against realistic scenarios).

1.3 Relation to other deliverables

The work performed in WP6 relies on the outcome of WP3 and WP4, as well as on WP5

activities, which performed the development and integration of components, according to the

roadmap described in D2.2.

D6.3 is an update of D6.1. From a programmatic point of view, it provides a feedback to WP5

(based on the results of the integration tests to be taken into account in D5.3 and D5.4) for

revisiting and improving the implementation of components and their interaction in the global

architecture. WP3 exploits these results as well to identify any required revision or extension

of the defined requirements. Finally, WP4 may review and revise the architecture in subsequent

iterations in light of the WP6 outcome.

D6.3 refers to D4.7 for many aspects, including the architectural concepts, the data model, the

components interactions, etc. The testing of the components interfaces and their integration is

based on the architecture and design deliverables of WP4, and specifically on the verification

scenarios and planning presented in deliverable D4.6, with some modifications that will be

highlighted in the rest of the document.

In spite of its coarse granularity, D2.2 forms the basis for checking the completeness of D6.3

coverage. D2.2 specifies the different rounds of development and the objectives in terms of

function, environment, etc. which directly defines the boundaries of the prototype integration

or related tasks (see sections 3.3 to 3.10). D6.3 reports on the integration steps and the

verification of components once combined with the rest of the RAWFIE system, before the

submission of this system to the validation process.

16

D6.3 refers explicitly to the Verification scenarios defined in D4.3 (section 5.1) for the

component testing at a high level, which gives emphasis to the integration process and therefore

on the interfaces, dependencies and interactions between components. D6.3 reflects the actual

emphasis of the integration process on the interfaces, dependencies and interactions between

components. D6.3 deals with, and presents, the interface testing results and the high-level

testing results, according to verification templates found in D4.6.

2 Integration & Testing

2.1 Approach

The objective of the Integration & Testing activities, whose results are presented in D6.3, is to

produce the second version of the end-to-end operational prototype of the RAWFIE platform.

Following the time-plan defined for Phase 2 of the Integration & Testing roadmap (D2.2), the

results reported in this deliverable reflect the integration and testing work carried out by

project’s partners during the 2nd technical iteration.

Since the approach does not substantially differ from what described in deliverable D6.1

(Integration & Testing during the 1st iteration), the reader is also invited to refer to Section 2

of the same deliverable for further details.

As a result of the 1st Integration & Testing iteration, some suggestions for modifications and

improvements to RAWFIE components and interfaces were derived. These suggestions,

together with the outcomes of the implementation activities from WP5, and the second version

of the requirements from D3.2, have triggered modifications and improvements in the design

of components’ functionalities and interfaces, being used as inputs for the second version of

the RAWFIE architecture (D4.4) and components’ specification (D4.5). In turn, the new

version of the components’ design, was used for defining new interface tests and verification

scenarios, or for updating the existing ones in D4.6. D4.6 is therefore the main reference

document for the integration and verification tests reported in D6.3.

2.2 Methodology

Integration testing includes activities where the different software components of the system

are combined and tested as a group, to verify both the communication interfaces and end-to-

end workflows and functionalities. The reader is invited to refer also to D6.1, Section 2, where

further details of the methodology are explained. Here we highlight that, for the purposes of

integration testing, the following tests categories are considered in the integration and

verification plan (D4.6) and, as a consequence, in the present deliverable:

 Testing of components interfaces: this kind of tests are performed for all implemented

components that provide a software interface to other components (via a REST or

SOAP / RPC API) or are capable to send/receive data from Message Bus. As an

example of the communication interfaces that need to be verified during system

components’ integration, following Figure 1 and Figure 2, taken from the D4.5,

 D6.3: RAWFIE Operational Platform Testing and Integration Report (b)

17

provide an overview of the several interactions (through different communication

technologies) between Frontend Tier components and Middle Tier components, and

between Middle Tier components and other system components, respectively.

 Execution/Testing of verification scenarios: This involves the execution of all the

verification scenarios defined in D4.6, Section 6.1, and can comprise tests whose aim

is mainly to verify individual components’ functionality – although in most cases they

have as prerequisite the existence of other components – as well as end to end scenarios,

where several system components are involved

Figure 1: Overview of software interfaces provided by Middle Tier Services and the Master Database,
and used by Frontend Tier modules

18

Figure 2: Overview of software interfaces between Middle Tier components, and between Middle Tier components and other system components

 D6.3: RAWFIE Operational Platform Testing and Integration Report (a)

19

2.2.1 Tests reporting format

Results of the verification tests are reported using two different reporting templates, for

interfaces testing and for the verification scenarios, respectively. These templates are described

in Section 2.2.1 of deliverable D6.1.

2.3 Integration of external components

The integration of new tools and services for the extension of the experimentation capabilities,

is easily realised thanks to the open architecture of RAWFIE, based on a mix of SOA principles

(therefore the availability of RPC and REST API), and the decoupling of components through

the asynchronous communication via the Message Bus.

2.3.1 Interoperability with external SFA clients through the SFA Aggregation Manager

From the technical standpoint, interoperability with external SFA clients is realised through the

implementation of a modified version of the SFA Aggregation Manager (AM) at Testbed level,

and its integration with existing RAWFIE components. The modified SFA Aggregation

Manager is provided in the context of the SAM proposal, who joined the project after the 1st

Open Call. It is therefore part of the SAM software module, which will be deployed on each

connected Testbed in order to handle, among the others, the reservation process of the

respective resources. Please also refer to D4.4, D4.5, and D4.7 for more details about the

components and functionalities of SAM software module.

The following are the main integration scenarios that will be realised the SFA principles:

 Adding/Editing/Deleting of resources. This action will always be performed through

the Testbed Manager admin UI. In this scenario the RAWFIE Testbed Manager

component will act as the gateway to the SFA Aggregation Manager, since it will

forward the modification requests to both the SFA Aggregation Manager using the

provided REST API (for updating the local Triple Store DB), and to the Testbed

Directory Service through its REST API, for updating the same information in the

centralised Master Data Repository of RAWFIE

 Listing / searching of resources. This action can be performed through the RAWFIE

platform as well as through external SFA enabled clients / GUI (e.g. MySlice). In the

former case, the RAWFIE Resource Explorer Tool and, in turn, the Testbed Directory

Service components will be used to search and visualise all or specific UxV resources

in the given Testbed. In the latter case, external SFA clients will directly call the SFA

Aggregation Manager through the provided REST API. The SFA AM will in turn

perform semantic queries to the local Triple Store DB.

 Booking requests. This action can be performed through the RAWFIE platform as

well as through external SFA enabled clients / GUI (e.g. MySlice). In the former case,

the RAWFIE Booking Tool will forward the booking request, through the Booking

20

Service, to the SFA Aggregation Manager using the provided REST API and to the

RAWFIE Master Data Repository, so that all repositories will be synchronised. In the

latter case, external SFA clients will directly call the SFA Aggregation Manager

through the provided REST API, and the SFA AM will in turn perform the booking

of resources in the local Triple Store DB. The Booking Service will also periodically

synchronise itself with the SFA Aggregation Manager, in order to ensure consistency

between the reservations made using the SFA interface (and therefore the content of

the Triple Store DB), and the ones made using the RAWFIE Booking Tool (Master

Data Repository).

2.3.2 Feedback from professional stakeholders

The RAWFIE system will be deployed in several sites, in which professional stakeholders will

take an active part. The RAWFIE technical team expects to get some feedback on various

topics during the deployments and exploitation of the RAWFIE system. This includes the ease

of deployment, the ease and efficiency in the documentation of all these aspects, the edition of

EDL scripts, the execution of experiments, the support given by the team, the exploitation of

the data collected during the experiment, including the experience gained by the various

stakeholders, etc. RAWFIE hereafter plans to implement a methodology, in which RAWFIE

should give a possibility for the professional stakeholders to give a feedback about the use and

impact of RAWFIE.

The RAWFIE technical team, in charge of the design, the prototyping and the validation of the

RAWFIE system and components will survey their deployments of the operational use through

several channels. Since the initial deployments will be done under the guidance of RAWFIE

experts (typically some members of the technical teams), the feedback will be obtained directly,

during debriefing meetings and from written reports. The outcome of the initial deployments

will help in defining the scope and processes of the professional stakeholders, in particular the

support teams.

Beyond their own experience gathered during the initial deployments and operations of the

RAWFIE prototypes, one of the most important channels for the validation is the feedback

from the professional stakeholders that are engaged in the lifecycle of the RAWFIE system.

Other stakeholders (e.g. testbed owners) will perform most of the next deployments, possibly

with the remote or on-site help of commercial support teams (see WP2 for the details about the

commercial exploitation of RAWFIE). The tools will still consists in debriefing meetings

organised during and after the deployments, combined with electronic questionnaire distributed

at specific points in time, corresponding to important points in the system lifecycle, such as

specification, installation, deployment tests, education, experiment development and

execution, result exploitation, etc. They can be complemented by the use of feedback forms

and statistics about the usage and the performance, directly integrated into the RAWFIE

system.

 D6.3: RAWFIE Operational Platform Testing and Integration Report (a)

21

2.3.3 Integration of RAWFIE “newcomers”

Many companies submitted proposals to Open calls, aiming at integrating their resources

(considered until then as external components) into the RAWFIE environment. RAWFIE

addresses the possibility of connecting new Testbeds to the core RAWFIE platform, and adding

new resources (UxVs) to already connected Testbeds. From the methodology standpoint,

newcomers joining the consortium through the open calls, are provided with all the needed

information before and during the submission of the proposals. After joining, they are

supported by RAWFIE partners during the integration process, through the organisation of

meetings and training events, and in the technical activities described below. The first outcome

of such integration process is mentioned in section 2.3.3.

2.4 Integration environment

This section describes the environment (depicted in Figure 3) used for the integration of the

RAWFIE components and sub-systems and the subsequent testing. This may include the

information, communication and computing infrastructure (servers, networks, etc.), the

configuration (component settings, credentials, etc.) and data repositories, the testbeds used for

testing and all other external services.

Figure 3: 1st RAWFIE environment integration

2.4.1 ICT infrastructure

For integration purposes clones for the development infrastructure described in D5.3 are

created. An identical environment, illustrated in Figure 4, was created for facilitating

continuous integration and resolving of errors. The messages from the online platform

(production environment) are mirrored to the development environment in order to all services

can be tested with real data. The mirrored environment is used for updates in coding and

upgrading the services without affecting the rest of the infrastructure and when a service is

stable enough is moved to the online platform.

22

Figure 4: RAWFIE clones for the development infrastructure

According to the DoA, the first Milestone related to the development cycles was defined in

M18 on which the 1st release of the platform was released. In order to outline a structured

development process while maximizing the productivity and reducing possible bugs (that could

be exposed to the experimenters), the RAWFIE consortium agreed in the creation of two

identical environments: production and development. The production environment is the online

platform that external users and experimenters can reach the RAWFIE functionalities via

Internet. The development environment consists of the same devices being used for updates in

coding and upgrading the services without affecting the rest of the infrastructure. An

application or a service is moved to the production environment when it is stable enough.

2.4.2 Data repositories

The data model defined in D4.7 can be broken down into four major components:

1. Persistent Storage of Message BUS / Measurements DB: This will be done by Kafka

Connect duplicating all messages on the BUS to HBASE (which is in turn backed by

Hadoop).

2. Analysis Results DB: This database will contain the results for the data analysis tasks

and is currently backed by a time series database called Whisper.

3. Master Data DB: This will house traditional SQL type data and is currently

implemented by PostgreSQL.

4. Users & Rights Repository: uses a LDAP repository, as LDAP is a de facto standard

for user management. It stores all user related data (name, organisation, address,

password) and group memberships (roles based access control). The selected

implementation is OpenDJ.

Official Release VMs for Developing Phase

Platform On Air
Public

Simulation
Engines

Platform On Air – On development

RAWFIE Simulated
Testbed

New testbeds

New Resources

 D6.3: RAWFIE Operational Platform Testing and Integration Report (a)

23

2.4.3 Tools & techniques for integration

RAWFIE uses a number of collaboration tools providing an integration friendly environment

for development and deployment, such as Git, Docker and Redmine (see Figure 1). Hadoop

and Hbase can also be considered as the connectors between the messages and the data storage

of experimenters, which provides an efficient decoupling that is convenient for integration.

Figure 5: Tools for integration

Several tools are being used in order to facilitate continuous reporting and the integration of

the software tools in a common environment. A Git platform was installed with Gitlab

environment for all partners can work concurrently by using branching. All software is

uploaded in project forms and then partners create branches for their specific features.

Another features that is used for the integration is the creation of machine image boxes in order

to provide to testbed operators “black boxes” with the RAWFIE required services pre-installed

and pre-configures. RAWFIE components are installed in Vagrant image boxes, which are used

for quick deployment of the RAWFIE system by the developers and testers.

2.4.4 Message Bus

The message bus is an essential integration tool. RAWFIE uses the Kafka message bus for

interconnecting the components, for data exchange, ordering and persistency, for reliability and

robustness, etc.

The Kafka mirroring feature is used for creating the replica of an existing cluster, for example,

for the replication of an active data centre into a passive data centre. Kafka provides a mirror

maker tool for mirroring the source cluster into target cluster. This feature is used to allow for

the replication of an exploitation environment to a site dedicated to development, test or

maintenance.

The following diagram depicts the mirroring tool placement in architectural form:

UxVs
Data messages Schemas
Adapters to message bus

Testbeds
Timetables
Maps
Monitoring Services API

Git

Redmine

Containers

Software
Updates to data model
New APIs integration

User /
Experimenter

USV / AUV UGV UAV

Booking tool

EDL Compiler
& Validator

Experiment
Validation

Service

UxV Navigation
tool

On-Board
 storage

SensorS &
Localization

Users & Rights
Service

Booking
Service

Web Portal

Resource
Explorer tool

Monitoring

tool
Visualization

tool
Data analysis

tool

Experiment
Controller

Launching
Service

Visualization
engine

Data analysis
engine

System
Monitoring

Service

On-board
processing

Network
 Communication

visual/graphical
editor for the EDL

textual editor
for EDL

Manual
Launching

Message Bus (payload:JSON or Avro)

HTML/REST, AJAX, WebSockets

JDBC,
LDAP,
etc.

Resource
Controler

Network
Controler

Device
management

Resource
Controler

Network
Controler

Monitoring Manager

Testbed Manager

Resource
Controler

Network
Controler

Testbeds
Directory

Service
SFA

Service

SFA
interface

Wiki
tool

Accounting
Service

HFS/HBase

Measurements

PostgreSQL

Master Data

OpenDJ

Users & Rights

Carbon

Analysis Results

Common Testbed Interface

Lo
ca

ll
M

es
sa

ge
 B

us

M
es

sa
ge

 B
u

s

Messaging Bridge SFA Aggregation Manager

Local DB

Monitoring Manager

Testbed Manager

SFA Aggregation Manager

Local DB

Monitoring Manager

Testbed Manager

SFA Aggregation Manager

Local DB

24

Figure 6: Mirroring architecture4

In contrast of replication processes, mirroring provides duplication of data across the testbeds.

The advantages of mirroring are multiple like single connections down, clients

connection/session times longer (depending on the location of the testbeds), legislation (some

data can be collected in a country while some other data should not).

2.4.5 Integration of new UxVs

D4.4 and D4.5 provide technical guidelines for new UxVs integration in the platform. As

specified in D4.5, UxV providers need to implement an “UxV Node” software module. This

module is the software adaptor for RAWFIE, which will make the integrated UxV able to send

measurements data, and to receive information and commands in standard format, mainly as

JSON messages based on AVRO schemas. The RAWFIE “UxV Node” module also

implements Apache Kafka Publishers and Consumers software, for the communication with

other RAWFIE components.

2.4.6 Integration of new Testbeds

Besides providing the needed equipment for network connectivity, Testbeds owners need to

deploy on premises the following RAWFIE software components:

 At least two local Apache Kafka message bus servers, for redundancy and high

availability: these nodes realise the communication of the UxVs in the given Testbed,

with other RAWFIE components

 Testbed Manager: provides the software interface to store UxVs related information

to the Local DB, to the Master Data Repository through the Testbed Directory Service

and to the Triple Store DB through the SFA Aggregate Manager (see D4.4, D4.5,

D4.7 for detailed information on the design and interactions of these components)

 Triple Store DB and SFA Aggregate Manager: the SFA AM provides, through a

REST API, advertising functionalities based on semantic searches on the local Triple

4

https://www.packtpub.com/mapt/book/big_data_and_business_intelligence/9781782167938/4/ch04lvl1sec20/cl

uster-mirroring-in-kafka

 D6.3: RAWFIE Operational Platform Testing and Integration Report (a)

25

Store. The same REST API is used for editing or adding new resources, to store local

resources (UxVs) information in the Triple Store DB

 Resource Controller (optional): provides resources controlling capabilities

according to custom algorithms developed within the RAWFIE project

 Monitoring Manager: provides Testbed side connection to the System Monitoring

services and the related Frontend tools.

These elements are distributed using Vagrant virtual machines, as described in section 2.4.5.

Several Vagrant5 virtual machine image boxes provide testebed operators with an environment

bundled with all the RAWFIE components and the required software for these components to

function properly. These images include all the testbed services, such as the Testbed Manager,

the Resource Controller, the message bus broker, etc.

The distribution of these boxes to our testbed operators has two main benefits. First, we save

time from building from scratch every time the required software environment to perform tests.

Secondly, the distribution of ready-to-go images ensures that there will be no problems to our

testers, due to software incompatibilities. In addition, with every upcoming upgrade to the

RAWFIE components everything will continue to work properly.

The process to integrate devices and testbeds in RAWFIE platform is straightforward:

1. Testbeds provide information registered in RAWFIE database like location, name

of the testbed, polygon of area or indoor map (if the testbeds is indoor)

2. RAWFIE provides to testbed operator a VM for being installed in a local server

3. VPN certificates created for the testbed and VPN connection

4. Testbed operator registers via Testbed Manager the devices in database

5. Trainings for the devices delivered in testbed

6. Testbed is up and running

Although the delivery of the devices to testbeds coming from 1st Open Call is ongoing, some

testbeds have started the integration process to the RAWFIE platform. The first testbed ready

for the integration was an indoor testbed providing experiments for UGVs in several rooms.

Starting from the kick off meeting in Athens for the Open Calls 1 people from the University

of Zaragoza provided an infrastructure of monitoring of the possible area of experiments. The

Wi-Fi coverage was established and tested to all the areas. The next thing was the installation

of a local RAWFIE server. The credentials for the VPN network was sent to the testbed and a

Virtual image of machine embedding of the required aforementioned services was sent to the

testbed. The indoor maps were created by a lidar-embedded sensor on the devices and sent for

their integration to RAWFIE geoserver in order to be used by the Experiment Authoring Tool

and the Visualization tool. The devices were compatible with the Message bus by

implementing a kafka consumer and producer and work in the VPN network. The integration

5 https://www.vagrantup.com/

https://www.vagrantup.com/

26

was fulfilled with the training of the manufacturer to the testbed owners for the devices

functionalities.

 D6.3: RAWFIE Operational Platform Testing and Integration Report (a)

27

2.5 Results of the Integration Test

This section provides an overview of the interfaces developed between the various SW modules

developed within RAWFIE. It includes front-end components as well as modules implemented

at middle tier, testbed and UxV level. The table below provides additional information about

the type of interface that exists between two components. The level of implementation/testing

is depicted with appropriate colouring and represents the situation at the end of the second

iteration of development.

In Table 1 each cell represents an interface that was tested. This cell is used by the two

components at the cross lines: each client component, or caller of one or many services

interfaces, is represented in the rows, while the called component or service interface/s is

represented in the columns.

28

 Table 1: interface interaction matrix

W
eb

 P
o

rt
al

W
ik

i

R
es

o
u

rc
e

Ex
p

lo
re

r
To

o
l

B
o

o
ki

n
g

To
o

l

Ex
p

er
im

en
t

A
u

th
o

ri
n

g
To

o
l

Ex
p

er
im

en
t

M
o

n
it

o
ri

n
g

To
o

l

Sy
st

em
 M

o
n

it
o

ri
n

g
To

o
l

U
xV

 N
av

ig
at

io
n

 T
o

o
l

V
is

u
al

iz
at

io
n

 T
o

o
l

D
at

a
A

n
al

ys
is

 T
o

o
l

ED
L

C
o

m
p

ile
r

&
 V

al
id

at
o

r

Ex
p

er
im

en
t

V
al

id
at

io
n

 S
er

vi
ce

U
se

rs
 &

 R
ig

h
ts

 S
er

vi
ce

B
o

o
ki

n
g

Se
rv

ic
e

La
u

n
ch

in
g

Se
rv

ic
e

Ex
p

er
im

en
t

C
o

n
tr

o
lle

r

D
at

a
A

n
al

ys
is

 E
n

gi
n

e

Sy
st

em
 M

o
n

it
o

ri
n

g
Se

rv
ic

e

Te
st

b
ed

s
D

ir
ec

to
ry

 S
er

vi
ce

A
cc

o
u

n
ti

n
g

Se
rv

ic
e

V
is

u
al

iz
at

io
n

 E
n

gi
n

e

M
as

te
r

D
at

a
R

ep
o

si
to

ry

U
se

rs
 &

 R
ig

h
ts

 R
ep

o
si

to
ry

M
ea

su
re

m
en

ts
 R

ep
o

si
to

ry

R
es

u
lt

s
R

ep
o

si
to

ry

Te
st

b
ed

 M
an

ag
er

M
o

n
it

o
ri

n
g

M
an

ag
er

N
et

w
o

rk
 C

o
n

tr
o

lle
r

R
es

o
u

rc
e

C
o

n
tr

o
lle

r

A
gg

re
ga

te
 M

an
ag

er
 (

SF
A

)

U
xV

 n
o

d
e

U
xV

 P
ro

xi
m

it
y

U
xV

 -
 N

et
w

o
rk

 c
o

m
m

u
n

ic
at

io
n

U
xV

 –
 S

en
so

rs
 &

 L
o

ca
liz

at
io

n

U
xV

 –
 O

n
 b

o
ar

d
 s

to
ra

ge

U
xV

 –
 O

n
 b

o
ar

d
 p

ro
ce

ss
in

g

U
xV

 –
 D

ev
ic

e
m

an
ag

em
en

t

Sc
h

em
a

R
eg

is
tr

y

Web Portal R L

Wiki L

Resource Explorer Tool R R

Booking Tool R R O

Experiment Authoring Tool O O R J

Experiment Monitoring Tool R R O

System Monitoring Tool R

UxV Navigation Tool M M M

Visualization Tool O M M M M

Data Analysis Tool M,R R

EDL Compiler & Validator O J

Experiment Validation Service J

Users & Rights Service O L

Booking Service R O

Launching Service R R M-p O M-p

Experiment Controller M-c M-p O M-p M-p

Data Analysis Engine R O R,O R

System Monitoring Service

Testbeds Directory Service O

Accounting Service O

Visualization Engine M-c J J M-c

Master Data Repository J

Users & Rights Repository

Measurements Repository

Results Repository J

Testbed Manager M-c M-p M-c

Monitoring Manager M-c

Network Controller M-p M M-c

Resource Controller M-c M-p M M M

Aggregate Manager (SFA)

UxV node M M M M-p M-p M I I I I I I M

UxV Proximity M M I I I I I

UxV - Network communication M M M M I I

UxV – Sensors & Localization M M M M I

UxV – On board storage I I

UxV – On board processing M I I

UxV – Device management I I

Schema Registry

MessageBus M

Rest R

SOAP S

UxV internal I

JDBC or JPA J

Other O

Success

Partial Success

Fail

Not Tested

Not applicable

 D6.3: RAWFIE Operational Platform Testing and Integration Report

29

Table 2 -Interface types used in interface testing

Type Description

M-c Message bus consumer (receives messages from the message bus)

M-p Message bus producer (sends messages to the message bus)

REST or R REST (via HTTP) web service

SOAP or S SOAP web service

LDPA or L LDPA

JDBC or J JDBC

JPA Java Persistence API

I UxV internal: UxV OS dependent

Note: For interface of type M-p, a related component is not included (or only “Message Bus”

is mentioned). This is for example the case when the component acts as producer. The rationale

behind this is that the producer of an Avro message just sends to the Bus agnostic of which will

receive it. This message may be received by multiple consumers and this interaction will be

depicted in the interface table of each receiver component including information for the exact

producer. Therefore, there is no need to replicate this for the producer by including several

similar rows.

2.5.1 Front-end integration

In the front-end tier, the integration activities included:

 Integration of User and Rights Service with the Web Portal as the main authorization

mechanism for gaining access to the RAWFIE platform

 The following tools were integrated and become accessible via the web portal:

o Wiki Tool

o Resource Explorer Tool

o Booking Tool

o Experiment Authoring Tool

o Experiment Monitoring Tool

o System Monitor Tool

o Visualisation Tool

o Data Analysis Tool

Details on the interface testing activities performed for each front-end tool mentioned above

are provided in the tables that follow:

Table 3: Test of the Web portal interfaces

Component: Web Portal Conducted by:

Fraunhofer

Date: Feb 2017 Test Category: Interface

testing

Preconditions Users are entered in the User & Rights Repository

Wiki Tool has some help pages

30

Related Component Type7 Message or API Call Status Remarks/comments

1 User & Rights Repository LDAP Lookup Success Lookup user with the given password

from the login page worked

2 Wiki Tool Other HTTP open web page Success Open web page in the Wiki Tool

containing help for the current page.

Table 4: Test of the Wiki Tool interfaces

Component: Wiki Tool Conducted by: Fraunhofer Date: Feb 2017 Test Category: Interface

testing

Preconditions Users are entered in the User & Rights Repository

Related Component Type Message or API Call Status Remarks/comments

1 User & Rights Repository LDAP Lookup Success Lookup user with the given password

from the login page worked

Table 5: Test of the Resource explorer interfaces

Component: Resource

Explorer

Conducted by: Fraunhofer Date: Feb 2017 Test Category: Interface

testing

Preconditions Resources are entered in the Master Data repository

Related Component Type Message or API Call Status Remarks/comments

1 Testbeds Directory

Service

REST searchResource Success Search resource by resource id

passig a JSON in input

2 getAllResources Success Got all resources/UxVs

3 searchTestbed Success Search testbed by testbed id

passing a JSON in input

4 getAllTestbeds Success Got all testbeds

5 getResources Success Got all resources/UxVs for a

specific testbed id passing a JSON

in input

6 testbed/identifier//{id} Success Testbed by testbed id

7 testbed/name/{name} Success Testbed by testbed name

8 testbeds?param1=value1

¶m2=value2¶m3=

value3

Success Testbeds by search parameters

9 resource/identifier/{id} Success Resource by resource id

10 resource/name/{name} Success Resource by resource name

11 resources?param1=value1

¶m2=value2¶m3=

value3¶m4=value4

Success Resources by search parameters

12 testbeds/uav Success Testbeds supporting UAV

13 testbeds/usv Success Testbeds supporting UGV

14 testbeds/ugv Success Testbeds supporting USV

15 Testbeds/auv Success Testbeds supporting AUV

5 Booking Tool HTTP Redirect to page Not

tested

Booking Tool does not support a

direct linkt to book a resource.

7 Type refers to how the component interacts/interfaces with related component. For example if the component

produces a message intended to be received by the related component the type should be M-p (acts as producer)

while if it consumes a message type should be M-c.

 D6.3: RAWFIE Operational Platform Testing and Integration Report

31

Table 6: Test of the Booking Tool interfaces

Component: Booking Tool Conducted by: Date: Feb 2017 Test Category: interface

testing

Preconditions  User must be logged in

 UxV resources must be present in a testbed and advertised to the platform (browsable

by the resource explorer tool)

 Booking Service must be up and running

 User & Rights Service must be up and running

 Related Component Type Message or API Call Status Remarks/comments

1

Booking Service

R addReservation Success

2 R editReservation Success

3 R deleteReservation Success

4 R getReservations Success

5 R getReservation Success

6
R checkForConflictingRes

ervations

Success

7 R approveBooking Success

8 R rejectBooking Success

9

User & Rights Service

R checkLogin Success Used to ensure that user of tool is

authorized

10
R checkTestbedRoles Success Used during approveBooking or

rejectBooking

11
Master Data

Repository

JPA/J

DBC

JPQL and/or JPA queries Success used to retrieve reservation & resource

information for display in calendar

view

Table 7: Test of the Experiment Authoring Tool interfaces

Component: Experiment

Authoring Tool

Conducted by: UoA Date: Feb 2017 Test Category: Interface

testing

Preconditions Users are entered in the RAWFIE Web Portal

Related Component Type Message or API Call Status Remarks/comments

1 Launching service REST manualStart Success Launching tool is correctly informed

about the ID of the experiment that

will be executed

2 REST schedule Not

tested

Schedule launch button not available

yet in UI

3 EDL Compiler &

Validator

Other - Success The compiler & validator is correctly

adopted when needed

4 Experiment validation

service

Other HTTP requests Success Compilation and validation are

smoothly executed in the authoring

tool

5 Master Data Repository JDBC JDBC-SQL Queries Success Data are correctly retrieved

32

Table 8: Test of the Experiment Monitoring Tool interfaces

Component: Experiment

Monitoring Tool

Conducted by: Fraunhofer Date: Feb 2017 Test Category: Interface

testing

Preconditions System Monitoring Service collected some data

Experiment Status is up-to-date in database

Related Component Type Message or API Call Status Remarks/comments

1 Master Data Repository JDBC SQL – select experiments of

user

Success

2 JDBC SQL – select experiment data

and status

Success

3 JDBC SQL – select UxVs data of

experiment

Success

4 System Monitoring

Service

REST getComponentServiceHealths Not

tested

Not implemented in Experiment

Monitoring Tool

5 Launching Service REST cancel Not

tested

Not implemented

Table 9: Test of the System Monitoring Tool interfaces

Component: System

Monitoring Tool

Conducted by: Fraunhofer Date: Feb 2017 Test Category: Interface

testing

Preconditions System Monitoring Service collected some data

Related Component Type Message or API Call Status Remarks/comments

1 System Monitoring

Service

REST getComponentServiceHealths Success Got all health statuses

Table 10: Test of the Visualisation Tool interfaces

Component: Visualisation

Tool

Conducted by: Epsilon Date: Feb 2017 Test Category: Interface

testing

Preconditions  User must be logged in to the portal

 Related Component Type Message or API Call Status Remarks/comments

1 Visualisation Engine Web-

socket

startExperiment Success Connect to the visualisation engine

and retrieve all the information about

an experiment and get data for the

movement of the UxVs

2 stopExperiment Success Stop the visualisation of an experiment

3 getExperiments Success List all available experiment for the

user

4 getExperimentDetails Success Get the details for an experiment that

the user wants to visualise

 D6.3: RAWFIE Operational Platform Testing and Integration Report

33

Table 11: Test of the Data Analysis Tool interfaces

Component: Data Analysis

Tool

Conducted by: HESSO Date: Feb 2017 Test Category: Interface

testing

Preconditions  User must be logged in

 Resources must be associated with a user

 Resources must be associated with an experiment

 Message Bus must be up and schema registry must be accessible

 Results database must be accessible

 Zeppelin & Spark must be operational

 Related Component Type Message or API Call Status Remarks/comments

1 Results Database REST render() Success Graphite is able to be queried via

REST and plots results

2 Data Analysis Engine

M-p buildJob() Success Send the Analytics jobs to the Data

Analysis Engine through the Kafka

message bus

3 REST Send the SPARK job

directly from the

Zeppelin UI

Success Message sent to Spark Directly via

REST interface. This is part of

Zeppelin by default and works already.

2.5.1.1 Missing components

The following components are not yet implemented and therefore were not tested:

 UxV Navigation Tool

Their development and integration to the web portal is targeted for the next implementation

iteration.

2.5.2 Middle tier integration

In the middle-tier integration, activities included testing of interfaces of the following services

(with front-end tools, between them and through the message bus):

 EDL Compiler and Validator

 Experiment Validation Service

 User & Rights Service

 Booking Service

 Launching Service

 Experiment Controller

 Data Analysis Engine

 System Monitoring Service

 Testbed Directory Service

 Visualisation Engine

Details on the interface testing activities performed for each component mentioned above are

provided in the tables that follow.

34

Table 12: Test of the EDL Compiler and Validator interfaces

Component: EDL Compiler

and Validator

Conducted by: UoA Date: Feb 2017 Test Category: Interface

testing

Preconditions Users are entered in the RAWFIE Web Portal

Related Component Type Message or API Call Status Remarks/comments

1 Experiment validation

service

Other HTTP requests Success Experiments are smoothly validated

2 Master data Repository JDBC JDBC-SQL Queries Success The get are correctly retrieved

Table 13: Test of the Experiment Validation Service interfaces

Component: Experiment

Validation Service

Conducted by: UoA Date: Feb 2017 Test Category: interface

testing

Preconditions Users have entered into the RAWFIE portal.

 Related Component Type Message or API Call Status Remarks/comments

1 Master data Repository JDBC JDBC-SQL Queries Success Data are correctly retrieved

Table 14: Test of the User & Rights Service interfaces

Component: Users & Rights

Service

Conducted by:

Fraunhofer

Date: Feb 2017 Test Category: Interface

testing

Preconditions

Related Component Type Message or API Call Status Remarks/comments

1 User & Rights repository LDAP bind Success User credential validated

2 LDAP search Success Entries (users, groups etc.) listed

3 LDAP create Success Entries (users, groups etc.) added

4 LDAP modify Success Entries (users, groups etc.) edited

5 Master Data Repository JDBC SQL select testbed roles Success Read roles for testbeds

 JDBC SQL edit testbed roles Success Edit roles for testbeds

Table 15: Test of the Booking Service interfaces

Component: Booking

Service

Conducted by: HAI Date: February 2017 Test Category: interface

testing

Preconditions  User must be logged in

 UxV resource info must be present in a Master Data Repository

 User & Rights Service must be up and running

 Related Component Type Message or API Call Status Remarks/comments

1 Master Data Repository JPA/

JDBC

Database call (insert) Success

2 JPA/

JDBC

Database call (update) Success

3 JPA/

JDBC

Database call (delete) Success

4 User & Rights Service R checkLogin Success Used to ensure that user of service is

authorized

5 Aggregate Manager

(SFA)

R Not yet defined Not

tested

Synchronization with Aggregate

Manager reservations. Aggregate

Manager not yet implemented

 D6.3: RAWFIE Operational Platform Testing and Integration Report

35

Table 16: Test of the Launching service interfaces

Component: Launching

Service

Conducted by: HAI Date: Feb 2017 Test Category: interface

testing

Preconditions  User must be logged in

 An experiment must be present for a user

 Resources must be associated with a user

 Resources must be associated with an experiment

 Message Bus must be up and configured with appropriate topics

(ExperimentStartRequest topic, ExperimentCancelRequest topic)

 Experiment Controller must be up and running

 Related Component Type Message or API Call Status Remarks/comments

1 Experiment Validation

Service

R validateExperiment Not

tested

Experiment Validation Service does

not yet exists

2 Experiment Controller M-p ExperimentLaunchRequ

est

Success Message was sent successfully to

Message Bus and consumed by

Experiment Controller

3 Resource Controller M-p ExperimentCancelReque

st

Success Message was sent successfully to

Message Bus

4 Master Data Repository JPA/

JDBC

Database Interaction Success Connection to database succeeded

Retrieval/update/insert of information

succeeded

5 User & Rights Service R checkLogin Success Used to ensure that user of service is

authorized

36

Table 17: Test of the Experiment Controller interfaces

Component: Experiment

Controller

Conducted by: CERTH Date: Feb 2017 Test Category: interface

testing

Preconditions  Message Bus must be up and configured with appropriate topics

 Connection to the RAWFIE database is required

 The related Resource Controller must be up and running

 Related Component Type Message or API Call Status Remarks/comments

1 Launching Service M-c ExperimentLaunchRequ

est

Success Message was successfully consumed

by Experiment Controller

3 Master Data Repository JDBC Database Interaction Success Retrieval of the experiment Script

succeeded

4 JDBC Database Interaction Success Retrieval of the resources partitions ids

succeeded

5 JDBC Database Interaction Success Retrieval of the testbed coordination

system succeeded

6 JDBC Database Interaction Success Insertion/Update inside

experimentlog/experiment_execution/
experiment tables succeeded

7 Resource Controller M-p ExperimentStartRequest Success Message was sent successfully to

Message Bus and consumed by

Resource Controller

8 M-c ExperimentStatusMsg Success Message was consumed by

Experiment Controller

9 Testbed Manager M-p ExperimentStartRequest Success Message was sent successfully to

Message Bus and consumed by

Testbed Manager

10 Visualization Engine M-p ExperimentStartRequest Success Message was sent successfully to

Message Bus and consumed by

Visualization Engine

Table 18: Test of the Data Analysis Engine interfaces

 D6.3: RAWFIE Operational Platform Testing and Integration Report

37

Component: Data Analysis

Engine

Conducted by: HESSO Date: Feb 2017 Test Category: Interface

testing

Preconditions  User must be logged in

 Resources must be associated with a user

 Resources must be associated with an experiment

 Message Bus must be up and schema registry must be accessible

 Results database must be accessible.

 Spark must be operational

 Landoop Schema browser must be operational

 Related Component Type Message or API

Call

Status Remarks/comments

1 Schema Registry +

Schema Browser
REST /subjects Success Successfully iterate over all schemas via

the augmented Landoop schema

browser. Selection of features can also

be done here.

2 Data Analysis Tool REST /api/notebook Success Data Analysis tool utilizes Zeppelin

REST api to POST data

3 Results Database REST /

Sockets
graphite.send() Success A simple socket based connection from

Spark sends online results to the

graphite instance

4 Measurements Database M-c hbase.read() Not

Tested
Awaiting hadoop / hbase deployment

Table 19: Test of System Monitoring Service interfaces

Component: System

Monitoring Service

Conducted by:

Fraunhofer

Date: Feb 2017 Test Category: Interface

testing

Preconditions

Related Component Type Message or API Call Status Remarks/comments

1 Servers (Computer) O various Success Servers health status collected

2 Testbed Manager M-c TestbedHealthStatus Success Testbed send their health status to the

message bus

3 M-c UvVHealthStatus Not

tested

Currently not sent to the message bus

38

Table 20: Test of the Testbed Directory Service interfaces

 D6.3: RAWFIE Operational Platform Testing and Integration Report

39

Component: Testbed

Directory Service

Conducted by: IES Date: Feb 2016, April

2017

Test Category: interface

testing

Preconditions Testbeds and Resources tables, as well as all related tables with linked information about

testbeds and resources, are present in the Master Data Repository (PostgreSQL DBMS)

Related Component Type Message or API Call Status Remarks/comments

1 Master Data

Repository

(PostgreSQL database)

JPA -

JDBC

Interaction

insertTestbed Success Operation performed by a

RepositoryHandler class, to

support the createTestbed()

REST API

2 updateTestbed Success Operation performed by a

RepositoryHandler class, to

support the editTestbed()

REST API

3 deleteTestbed Success Operation performed by a

RepositoryHandler class, to

support the deleteTestbed()

REST API

4 insertResource Success Operation performed by a

RepositoryHandler class, to

support the createResource()

REST API

5 updateResource Success Operation performed by a

RepositoryHandler class, to

support the editResource()

REST API

6 deleteResource Success Operation performed by a

RepositoryHandler class, to

support the deleteResource()

REST API

7 fetchTestbed Success Operation performed by a

RepositoryQuery class, to

support the searchTestbed()

REST API (get details about a

specific testbed)

8 fetchTestbeds Success Operation performed by a

RepositoryQuery class, to

support the getTestbeds()

REST API (get details about

the specified testbeds)

9 fetchResource Success Operation performed by a

RepositoryQuery class, to

support the searchResource()

REST API (get details of a

specific resource from a

specific testbed)

10 fetchResourcesTestbed Success Operation performed by a

RepositoryQuery class, to

support the getResources()

REST API (to get details of all

resources from a specific

testbed)

11 fetchResourcesAvailable Success Operation performed by a

RepositoryQuery class, to

support the

getAvailableResources()

REST API (get details of all

resources which are

AVAILABLE for booking

tests from a specific testbed)

40

12 fetchTestbedById Success Operation performed by a

RepositoryQuery class, to

support the testbed search by

id

13 fetchTestbedByName Success Operation performed by a

RepositoryQuery class, to

support the testbed search by

name

14 fetchTestbedsByUAV Success Operation performed by a

RepositoryQuery class, to

support the testbed search by

UAV support

15 fetchTestbedsByUGV Success Operation performed by a

RepositoryQuery class, to

support the testbed search by

UGV support

16 fetchTestbedsByUSV Success Operation performed by a

RepositoryQuery class, to

support the testbed search by

USV support

17 fetchTestbedsByAUV Success Operation performed by a

RepositoryQuery class, to

support the testbed search by

AUV support

18 fetchTestbedsByParameters Success Operation performed by a

RepositoryQuery class, to

support the testbeds search by

a combination of search

criteria

19 fetchResourceById Success Operation performed by a

RepositoryQuery class, to

support the resource search by

id

20 fetchResourceByName Success Operation performed by a

RepositoryQuery class, to

support the resource search by

name

21 fetchResourcesByParameters Success Operation performed by a

RepositoryQuery class, to

support the resources search

by a combination of search

criteria

 D6.3: RAWFIE Operational Platform Testing and Integration Report

41

Table 21: Test of the Visualisation Engine interfaces

Component: Visualisation

Engine

Conducted by: Aberon Date: March 2017 Test Category: interface

testing

Preconditions  User must be logged in to the portal

 Measurements and Results repository should be available

 Kafka should be available with the necessary topics

Related Component Type Message or API Call Status Remarks/comments

1 Master Data Repository JDBC GetExperimentDetails Success Get Experiment Status

2 Resource Controller M-c getGoTo Partial

Success

Get the Goto Commands

3 M-c ExperimentStatusMsg Not

Tested

Not implemented yet

4 Experiment Controller M-c ExperimentStartReque

st

Success Get the ExperimentStartRequest from

the Message bus

5 UxV Node M-c getUxVLocation Success Get the location of an UxV

6 getUxVSensorList Not

Tested

Not implemented yet in UxVNode and

in VE

7 M-c getUxVSensorData Partial

Success

Get the sensor data from the UxVs.

Not all sensor data is implemented yet.

8 M-c getUxVStatus Not

tested

9 Measurement Repository JDBC GetFinishedExperimen

tDetails

Not

Tested

Get the experiment details for a

finished experiment. Not implemented

yet

10 JDBC GetUxvData Not

Tested

Get the UxV information for a finished

experiment. Not implemented yet

11 JDBC GetSensorData Not

Tested

Get the UxV sensor data for a finished

experiment. Not implemented yet

2.5.2.1 Missing components

The following components are not yet implemented and therefore were not tested:

 Accounting Service

Their development and integration is targeted for the next implementation

2.5.3 Testbed & UxV integration

At the testbed level integration, activities included testing of interfaces of the following

components (between them and through the message bus with UxVs or middle-tier

components):

 The Testbed Manager

 The Monitoring Manager

 The Resource Controller

 UxV node

Details on the interface testing activities performed for each component mentioned above are

provided in the tables that follow.

42

Table 22: Test of the Tesbed Manager interfaces

Component: Testbed

Manager

Conducted by: HAI Date: April 2017 Test Category: interface

testing

Preconditions  Confluent platform properly configured, up and running

 Related components must be up and running

Related Component Type Message or API Call Status Remarks/comments

1 System Monitoring

Service

M-p TestbedHealthStatus Success System Monitoring properly

consumes the message that describes

the current health of the machine

running the Testbed Manager

2 Resource Controller M-c ExperimentStatusMsg Success Testbed Manager properly consumes

the message that described the status

of an experiment from Resource

Controller

3 M-p ExperimentCancelRequest Not

Tested

Cancellation of experiments in

emergency cases from Testbed

Manager not implemented

4 Experiment Controller M-c ExperimentStartRequest Success Testbed Manager properly consumes

that describes the start of an

experiment from Experiment

Controller

Table 23: Test of the Monitoring Manager interfaces

Component: Monitoring

Manager

Conducted by: HAI Date: April 2017 Test Category: interface

testing

Preconditions  Confluent platform properly configured, up and running

 Reliable Internet connection with UxVs

Related Component Type Message or API Call Status Remarks/comments

1 UxVNode M-c FuelUsage Success Real data from the devices

2 M-c CpuUsage Success Real data from the devices

3 M-c StorageUsage Success Real data from the devices

4 M-c Location Not

Tested
Consumption of Location messages

is not implemented yet

5 M-c Attitude Not

Tested
Consumption of Attitude messages is

not implemented yet

 D6.3: RAWFIE Operational Platform Testing and Integration Report

43

Table 24: Test of the Resource Controller interfaces

Component: Resource

Controller

Conducted by: CERTH Date: Feb 2017 Test Category: interface

testing

Preconditions  Confluent platform properly configured, up and running

 Experiment Controller must be up and running

 Related UxV Nodes must be up and running



Related Component Type Message or API Call Status Remarks/comments

1 UxV Node M-p WriteHealthStatus Not tested Send and receive real-time

information to resources

2 M-p WriteUxVCommands Success Send and receive real-time

information to resources

3 M-p WriteExperimentStatus Success Send real-time kafka messages

regarding the status of the

experiment

4 M-c ReadUxVStatus Not tested Resource Controller does not read

UxV status yet

5 M-c Location Success Resource Controller is able to read

the actual position of the vehicles

6 Experiment Controller M-c ExperimentStartRequest Success Resource Controller successfully

receives and parses the experiment

to be executed

7 M-p ExperimentStatusMsg Success Message was sent successfully to

Message Bus

8 Launching Service M-c ExperimentCancelRequest Success Resource Controller successfully

receives and executes cancel

requests

9 Testbed Manager M-c ExperimentCancelRequest Not tested Functionality not implemented yet

 M-p ExperimentStatusMsg Not tested Functionality not implemented yet

Table 25: Test of the UxV Node interfaces

Component:UxV Node Conducted by:

Robotnik, MST

Date: Feb 2017 Test Category: interface testing

Preconditions  A server running the Confluent platform

 UxV manufacturer’s (e.g. Robotnik) specific preconditions:

 The necessary topics should be already registered

 A server running the Confluent platform should be available with the

necessary topics

 Input from the resource controller

 Reliable Internet connection

 Related Component Type Message or API Call Status Remarks/comments

1
Resource Controller M-c Goto Success GPS coordinates accuracy and threshold

for next waypoint needs to be configured

2

KeepStation Success Tested with success by MST; Ground

vehicles are accepting this command as

no waypoint commanded

3 Abort Success Tested with success

4

Location Success Without GPS specifying an origin of

coordinates is needed. For indoor

scenarios Cartesian coordinates are given

with standard goto message

5

Visualization Tool M-p Location message Success Visualization indoors is now using

specific images created with mapping

tools normally using 2D scans

44

6 Visualization Engine M-p Location message Success Get the location of an UxV

7
M-p SensorReadingScalar Partial

Success

Get the sensor data from the UxVs. Not

all sensor data is implemented yet.

8 M-p UxVStatus Not tested

9

Data Analytics

M-p SensorReadingScalar Success Tested Salinity, Conductivity, and

SoundSpeed with water vehicles.

Temperature measurements from both

water and ground vehicles

10
Current Partial

Success

Tested with success by MST

11
Voltage Partial

Success

Tested with success by MST

12
StorageUsage Partial

Success

Tested with success by MST

13
FuelUsage Partial

Success

Tested with success by MST

14
CpuUsage Partial

Success

Tested with success by MST

15
SensorInfo Partial

Success

Tested with success by MST

16 Monitoring manager M-p FuelUsage Success Real data from the devices

17 CpuUsage Success Real data from the devices

18 StorageUsage Success Real data from the devices

19
Schema Registry M CachedSchemaRegistryClien

t

Success Get the schema registry

2.5.3.1 Missing components

The following components are under implementation and therefore were not yet fully tested

from an integration point of view:

 Network controller

 Aggregate Manager (SFA)

 UxV Proximity Component

Their integration are planned for the next implementation round.

2.6 Verification scenarios results

2.6.1 Frontend Tier

The verification of the Front-end tier mainly consists testing the Web Portal GUI elements.

 D6.3: RAWFIE Operational Platform Testing and Integration Report

45

2.6.1.1 Web Portal

Table 26: Verification test of the Web Portal - Login/ Logout

Test ID: WP01 Conducted by:

Fraunhofer

Date: April 2017 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Web Portal - Login/ Logout

Preconditions  User entered in the User & Rights repository

Related Requirements PT-WEB-P-001, PT-WEB-P-002

Tools Used  Browser

Step Action Expected Result Status Remarks

1 user opens RAWFIE any web page redirect to login page,

login form displayed

Success

2 user enters invalid credentials and

submits the form

error message

displayed

Success

3 user enters valid credentials and submits

the form

redirect to start page Success

4 user press the logout button redirect to login page,

login form displayed,

logout message

displayed

Success

Table 27: Verification test of the Web Portal – Language selection

Test ID: WP02 Conducted by:

Fraunhofer

Date: April 2017 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Web Portal – Language selection

Preconditions  Translation available

Related Requirements PT-WEB-P-001

Tools Used  Browser

Step Action Expected Result Status Remarks

1 user opens RAWFIE any web page web page with

language selection

displayed,

Success

2 user changes the language web page displayed

in the selected

language

Partial

success

Language is changed, but

only a few text are

translated (missing

translations)

46

Table 28: Verification test of the Web Portal – User management

Test ID: WP03 Conducted by: Date: Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Web Portal – User management

Preconditions  Admin login available

 No pending registration request

Related Requirements PT-WEB-P-002

Tools Used

Step Action Expected Result Status Remarks

1 Browser 1: login as administrator and

open user management page

management page

displayed

Not tested

2 Browser 1: Navigate to registration

requests page

No registration

request displayed

Not tested

3 Browser 2: Open register form, fill in

form (login credentials, personal data,

etc.) and submit

Registration request

stored and

confirmation shown

to the user.

Not tested

4 Browser 2:Try to login with the submitted

login credentials

Login failed. Display

message that user is

looked

Not tested

5 Browser 1: Reload registration requests

page

The new registration

request is show

Not tested

6 Browser 1: Accept the new user The new user is now

unlooked

Not tested

7 Browser 2: Try to login with the

submitted login credentials

Login successful. Not tested

8 Browser 1: Navigate to the user list and

delete the new user

User deleted Not tested

9 Browser 2: Logout and try to login with

the submitted login credentials

Login failed. Show

invalid credentials

messages

Not tested

 D6.3: RAWFIE Operational Platform Testing and Integration Report

47

2.6.1.2 Wiki Tool

Table 29: Verification test of the Wiki Tool – Component Help

Test ID: WT01 Conducted by:

Fraunhofer

Date: April 2017 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Wiki Tool – Component help

Preconditions  Help pages added to the Wiki

Related Requirements PT-WEB-P-003

Tools Used

Step Action Expected Result Status Remarks

1 Login to the Web Portal and open

Resource Explorer

Resource Explorer

page displayed

Success

2 Click on the Help icon Wiki Tool opened

with the article about

Resource Explorer

Success

3 Repeat step 2 of other pages (like

Visualization Tool, Booking tool, etc.)

 Success

Table 30: Verification test of the Wiki Tool – Editing

Test ID: WT02 Conducted by:

Fraunhofer

Date: April 2017 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Wiki Tool – Editing

Preconditions  User for Wiki management defined

Related Requirements PT-WEB-P-003

Tools Used

Step Action Expected Result Status Remarks

1 Login to the Web Portal as normal

experimenter and open a page in the Wiki

Tool

Wiki page displayed Success

2 Try to edit the page Editing not possible

due to missing rights

Success

3 Login as administrator and assign the

Wiki manager right to the user

The user has now the

Wiki manager right

Not tested User right directly changed

in the User & Rights

repository

4 Login as the first user and open a page in

the Wiki Tool

Wiki page displayed Success

5 Try to edit the page Editing allowed as

changes are save

Success

48

2.6.1.3 Resource Explorer Tool

Table 31: Verification test of the Browse testbeds and UxVs and start booking

Test ID: RET01 Conducted by:

Fraunhofer

Date: April 2017 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Browse testbeds and UxVs and start booking

Preconditions  connection to the Testbeds Directory Service OK

 data about testbeds and UxVs available

Related Requirements PT-REE-T-001, PT-REE-T-003, PT-REE-T-004

Tools Used  Browser

Step Action Expected Result Status Remarks

1 user opens Resource Explorer Tool in the

Web Portal

Resource Explorer

Tool displays a view

with all available

testbeds

Success

2 user selects a testbed Resource Explorer

Tool displays all

testbed details and a

list of available UxVs

Success

3 user selects a UxV Resource Explorer

Tool displays all

UxVs details

Success

4 user starts booking Booking Tool opened

with the selected

resources

Not tested Not implemented

 D6.3: RAWFIE Operational Platform Testing and Integration Report

49

2.6.1.4 Booking Tool

Table 32: Verification test of the Booking Tool Calendar View and its display options

Test ID: BT01 Conducted by: HAI Date: February

2017

Test Category: Verification

Tests (web tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Tool Calendar View and display options

Preconditions  connection to the Booking Service ok

 user has logged in the web portal

 reservations of different status exist in the Master DB

Related Requirements PT-BOO-T-001

PT-BOO-T-003

PT-BOO-T-006

PT-BOO-T-010

PT-BOO-S-008

Tools Used

Step Action Expected Result Status Remarks

1 Click of Bookings menu item Navigation to

Booking Tool

(Calendar View)

Success

 Calendar view

displays by default the

present week with all

defined bookings

Success

2 Switch Calendar display to display week,

month, day interval via the appropriate

options

Calendar view

changes to present the

selected interval with

all defined bookings

Success

3 Navigate back and forth in time via the

provided navigation buttons (for every

selection made in step 2)

Calendar view

changes to previous or

future date time

intervals

Success

4 Verify by inspection of existing

reservations that only reservations of

certain status are visible in the Calendar

View

Reservation of status

PENDING, OK or

REJECTED should

only be displayed

Success

50

Table 33: Verification test of the Booking Tool Calendar View Interactions

Test ID: BT02 Conducted by: HAI Date: February

2017

Test Category: Verification

Tests (web tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Tool Calendar View Interactions

Preconditions  connection to the Booking Service ok

 user has logged in the web portal

 reservations of different status exist in the Master DB

Related Requirements PT-BOO-T-001

PT-BOO-T-003

PT-BOO-T-005

PT-BOO-T-006

PT-BOO-S-002

PT-BOO-S-004

Tools Used

Step Action Expected Result Status Remarks

1 Click on an empty calendar timeslot

(result should depend on the relevance of

the timeslot to the present time)

If click occurs on a

past timeslot a popup

warning is displayed

Success

 If click occurs on a

future timeslot the

“Create Reservation”

window opens

Success

2 Click on an existing reservation

(result should depend on the relevance of

the reservation to the present time)

If click occurs on a

past reservation the

“Edit Reservation”

window opens but no

further actions are

offered to the user

Success

 (see also test BT04) If click occurs on a

future reservation the

“Edit Reservation”

window opens and the

user can perform

certain actions on the

reservation.

Displayed actions

depend on user role

and reservation status

Success

3 verify the displayed color for each

reservation (click existing reservations)

Coloring of

reservation should

differ based on the

reservation status

(shown in the Edit

Reservation window)

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

51

Table 34: Verification test of the Booking Tool Create Reservation

Test ID: BT03 Conducted by: HAI Date: February

2017

Test Category: Verification

Tests (web tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Tool Create Reservation

Preconditions  connection to the Booking Service ok

 user has logged in the web portal

 user has clicked on an empty future timeslot

Related Requirements PT-BOO-T-001

PT-BOO-T-003

PT-BOO-T-004

PT-BOO-T-009

PT-BOO-T-010

PT-BOO-S-006

Tools Used

Step Action Expected Result Status Remarks

1 User edits the field of the “Create

Reservation” form so that no time

overlapping with other reservation exists

and presses the OK button (no conflicts

scenario)

Reservation is created

and displayed in the

Calendar View.

Reservation is put in

PENDING state

Success

2 User edits the field of the “Create

Reservation” form so that a time

overlapping with other reservation exists

and presses the OK button (possible

conflict scenario)

If no common

resources exist with

the overlapping

reservation then the

new reservation is

created and displayed

in the Calendar View.

Reservation is put in

PENDING state

Success

 If common resources

exist with the

overlapping

reservation then the

new reservation is not

created and a warning

message is displayed

Partial

Success

Result may depend on status

of pre-existing reservation

52

Table 35: Verification test of the Booking Tool Edit Reservation Actions

Test ID: BT04 Conducted by: HAI Date: February

2017

Test Category: Verification

Tests (web tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Tool Edit Reservation Actions

Preconditions  connection to the Booking Service ok

 user has logged in the web portal

 user has clicked on an existing future reservation

Related Requirements PT-BOO-T-003

PT-BOO-T-005

PT-BOO-T-007

PT-BOO-T-008

PT-BOO-T-010

PT-BOO-S-006

PT-NF-002

Tools Used

Step Action Expected Result Status Remarks

1 The actions available to the Edit

Reservation window depend on

the:

 status of reservation

 user

 role of the user

 status=PENDING

user= owner of reservation

role= EXPERIMENTER

Actions available:

OK, CANCEL DELETE

Success

 status=OK

user= owner of reservation

role= EXPERIMENTER

Actions available:

OK, CANCEL DELETE

Success

 status=REJECTED

user= owner of reservation

role= EXPERIMENTER

Actions available:

OK, CANCEL DELETE

Success

 status=PENDING

user= owner of reservation

role= TESTBED_OP

Actions available:

OK, CANCEL, DELETE,

APPROVE, REJECT

Success

 status=PENDING

user= not owner of reservation

role= TESTBED_OP

Actions available:

CANCEL, APPROVE, REJECT

Success

 status=OK

user= owner of reservation

role= TESTBED_OP

Actions available:

CANCEL, DELETE, REJECT

Success

 status=OK

user= not owner of reservation

role= TESTBED_OP

Actions available:

CANCEL, REJECT

Success

 status=REJECTED

user= owner of reservation

role= TESTBED_OP

Actions available:

CANCEL, DELETE, APPROVE

Success

 status= REJECTED

user= not owner of reservation

role= TESTBED_OP

Actions available:

CANCEL, APPROVE

Success

 user= not owner of reservation No actions available Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

53

2 Owner of reservation performs

changes to the reservation and

presses OK button

If the changes do NOT introduce

conflicts in both timeslots and

selected resources then the

reservation is successfully

updated and the UI refreshed to

display the changes

Success

 If the changes do introduce

conflicts in both timeslots and

selected resources then a warning

message appears and no further

action is performed

Success

3 Owner of reservation presses

DELETE button

If reservation does not refer to a

currently running experiment then

it is put in a CANCELLED state

and removed from the UI

Success

4 User with TESTBED_OP role

presses APPROVE button

If no resource conflicts with

already created reservation exists

then reservation status becomes

OK and color changes

appropriately in the Calendar

view

Success

5 User with TESTBED_OP role

presses REJECT button

reservation status becomes

REJECTED and color changes

appropriately in the Calendar

view

Success

54

2.6.1.5 Experiment Authoring Tool

Table 36: Verification test of the in-Textual Editor Experiments definition

Test ID: EAT01 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Define Experiments in the Textual Editor

Preconditions  User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-

T-005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used

Step Action Expected Result Status Remarks

1 Access to the Textual Editor through

the RAWFIE Web Portal

Redirection to the Textual

Editor interface

Success

2 Write an experiment Experiment is presented in

the editor

Success

3 Utilize code completion, content assist

and compilation

The editor responds with

specific drop down lists,

messages, etc.

Success

4 Define erroneous commands in the

experiment workflow

The editor responds with

error messages and

indication for correcting

the error

Success

5 Save the experiment The experiment is stored in

the database and specific

files are produced to be

adopted by the remaining

RAWFIE components

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

55

Table 37: Verification test of the Textual Editor Experiments Update

Test ID: EAT02 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Update Experiments in the Textual Editor

Preconditions  User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-

T-005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used

Step Action Expected Result Status Remarks

1 Access to the Textual Editor through

the RAWFIE Web Portal

Redirection to the Textual

Editor interface

Success

2 Open an already defined experiment Experiment is presented in

the editor

Success

3 Makes changes in the experiment

workflow

The experiment is updated Success

4 Save the experiment The experiment is stored in

the database and specific

files are produced to be

adopted by the remaining

RAWFIE components

Success

56

Table 38: Verification test of the in-Visual Editor Experiments Define

Test ID: EAT03 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Define Experiments in the Visual Editor

Preconditions  User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-

T-005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used 

Step Action Expected Result Status Remarks

1 Access to the Visual Editor through the

RAWFIE Web Portal

Redirection to the

Visual Editor

interface

Success

2 Access the available toolbar Specific windows are

presented

Success

3 Create an experiment by utilizing the

available tools

The experimenter can

defined waypoints

and experiment

information by

clicking and

designing in the

visual editor

Success

4 Define erroneous commands The authoring tool

responds with error

messages and

indication for

correcting the error

Success

5 Save the experiment The experiment is

stored in the database

and specific files are

produced to be

adopted by the

remaining RAWFIE

components

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

57

Table 39: Verification test of the in-Visual Editor Experiments Update

Test ID: EAT04 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Update Experiments in the Visual Editor

Preconditions  User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-

T-005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used 

Step Action Expected Result Status Remarks

1 Access to the Visual Editor through the

RAWFIE Web Portal

Redirection to the

Visual Editor

interface

Success

2 Open an already defined experiment Experiment is

presented in the

editor

Success

3 Makes changes in the experiment

workflow

The experiment is

updated

Success

4 Save the experiment The experiment is

stored in the database

and specific files are

produced to be

adopted by the

remaining RAWFIE

components

Success

58

Table 40: Verification test of the Editor switching

Test ID: EAT05 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Switch between the Editors

Preconditions  User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-

T-005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used 

Step Action Expected Result Status Remarks

1 Access to the editors through the

RAWFIE Web Portal

Redirection to the

editors interface

Success

2 Create an experiment Experiment is

presented in the

editors

Success

3 Switch to the alternative editor and make

changes

The experiment is

updated

Success

4 Save the experiment The experiment is

stored in the database

and specific files are

produced to be

adopted by the

remaining RAWFIE

components

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

59

Table 41: Verification test of the experiment Launchings

Test ID: EAT05 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Launch experiments

Preconditions  User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-

T-005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used 

Step Action Expected Result Status Remarks

1 Access to the authoring tool through the

RAWFIE Web Portal

Redirection to the

editors interface

Success

2 Select an experiment A drop down list of

the available

experiments is

appeared and the

experimenter has the

opportunity to select

one

Success

3 Start the experiment execution The launching service

is informed with the

experiment ID and

the execution starts

Success

60

2.6.1.6 Experiment Monitoring Tool

Table 42: Verification test of the Visualisation of experiment status

Test ID: EMT01 Conducted by:

Fraunhofer

Date: April 2017 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Visualisation of experiment status

Preconditions  connection to the Launching Service ok

 knowledge about the experiments state needed on user side (to check

results)

Related Requirements PT-EXM-T-001,

Tools Used  Browser

Step Action Expected Result Status Remarks

1 user opens Experiment

Monitoring Tool in the Web

Portal

Experiment Monitoring Tool

displays a view with all

experiments of the current user

(ordered by date descending). The

list also contains a sort summary

of the experiments state

Success

2 user selects a experiment Experiment Monitoring Tool

displays all experiment details

(date / timespan; related testbed;

list of used UxVs; execution state ;

link to the used EDL)

Partial

Success

Link to EDL not

implemented

2.6.1.7 System Monitoring Tool

Table 43: Verification test of the Visualisation of system and UxV health status

Test ID: SMT01 Conducted by:

Fraunhofer

Date: April 2017 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Visualisation of system and UxV health status

Preconditions  connection to the System Monitoring Service (may not be necessary if

System Monitoring Service collects all necessary data anyway)

 administrative knowledge about the system state needed on user side (to

check results)

Related Requirements PT-SYM-T-001

Tools Used  Browser

Step Action Expected Result Status Remarks

1 user opens System Monitoring Tool in the

Web Portal

the System

Monitoring Tool

displays views with

status of, middleware

components,

testbeds

components, UxVs

components

Partial

success

Servers and Testbeds

displayed.

UxVs did not send status

information (to be

implemented)

 D6.3: RAWFIE Operational Platform Testing and Integration Report

61

2.6.1.8 UxV Navigation Tool

Table 44: Verification test of the UxV navigation tool access and produced instructions validation

Test ID: UxVNT01 Conducted by: CERTH Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Validate Experiments

Preconditions  Requires Web Portal to be functioning and accessible

Related Requirements PT-EXV-S-001, PT-EXV-S-002, PT-EXV-S-003

Tools Used

Step Action Expected Result Status Remarks

1 Access the UxV Navigation Tool through

the portal

Ability to navigate

the swarm

Not tested Not implemented

2 Validate the produced instructions

Validate the schema of the JSON output

file

Validate the data format of the JSON

output file

Validate the size of the JSON output file

All validation

successful. The

output data should be

accessible and

compatible with the

required format

Not tested Not implemented

2.6.1.9 Visualisation Tool (Aberon)

Table 45: Verification test of the User request handling

Test ID: VIS01 Conducted by: Aberon Date: April 2017 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: User request handling
Preconditions  Requires visualization tool to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

Related Requirements PT-VIS-T-001, PT-VIS-T-007

Tools Used 

Step Action Expected Result Status Remarks

1 User sends a predefined websocket

request via the visualization tool

The visualization tool

forwards it to the

visualization engine

Success

2 Handle the response from the

visualization engine

The response is

visualized on the user

screen

Success

62

Table 46: Verification test of the Geospatial data handling

Test ID: VIS02 Conducted by: Aberon Date: April 2017 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Geospatial data handling
Preconditions  Requires visualization tool to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

 Requires message bus to be functioning & accessible.

Related Requirements PT-VIS-T-001, PT-VIS-T-002, PT-VIS-T-004, PT-VIS-T-005, PT-

VIS-T-006, PT-VIS-T-007

Tools Used 

Step Action Expected Result Status Remarks

1 Acquire predefined geospatial data

(WMS, WFS) via the message bus
Data is properly

received in the

correct format at the

VE

Success

2 Modify the data to be suited for the VT

and send it via websocket to VT

VT renders the data

and plots it on the

screen

Success

Table 47: Verification test of the Geospatial data modification

Test ID: VIS03 Conducted by: Aberon Date: April 2017 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Geospatial data modification

Preconditions  Requires visualization tool to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

 Requires message bus to be functioning & accessible.

Related Requirements PT-VIS-T-001, PT-VIS-T-002, PT-VIS-T-004, PT-VIS-T-005, PT-

VIS-T-006, PT-VIS-T-007

Tools Used  Browser

Step Action Expected Result Status Remarks

1 Acquire predefined geospatial data

(WMS, WFS) via the message bus
Data is properly

received in the

correct format at the

VE

Success

2 Add a layer of information data and send

it to the VT

VT plots the data and

the layer properly

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

63

Table 48: Verification test of the Experiment Controller communication

Test ID: VIS04 Conducted by: Aberon Date: April 2017 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Experiment Controller communication

Preconditions  Requires experiment controller to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

Related Requirements PT-VIS-T-001

Tools Used

Step Action Expected Result Status Remarks

1 Receive a message that the experiment

has started from the Experiment

Controller

The visualization tool

starts the experiment

Partial

success

Tested with previous

component, with

experiment controller not

yet

2 Receive a message that the experiment

has stopped from the Experiment

Controller

The VT stops the

experiment

Partial

success

Tested with previous

component, with

experiment controller not

yet

Table 49: Verification test of the Visualization Tool Interaction

Test ID: VIS05 Conducted by: Aberon Date: April 2017 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Visualization Tool Interaction
Preconditions  Requires visualization tool to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

Related Requirements PT-VIS-T-001, PT-VIS-T-002, PT-VIS-T-003, PT-VIS-T-004, PT-

VIS-T-005, PT-VIS-T-006, PT-VIS-T-007

Tools Used 

Step Action Expected Result Status Remarks

1 Enable/Disable different features of the

visualization tool (e.g. show/hide speed

web widget)

The user sees the

updated plot

(show/hide speed

web widget)

Partial

success

64

Table 50: Verification test of the Camera interaction

Test ID: VIS06 Conducted by: Date: April 2017 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Camera interaction

Preconditions  Requires visualization tool to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

 Requires Experiment controller to be functioning & accessible.

Related Requirements PT-VIS-T-001, PT-VIS-T-002, PT-VIS-T-003, PT-VIS-T-004, PT-

VIS-T-005, PT-VIS-T-006, PT-VIS-T-007

Tools Used 

Step Action Expected Result Status Remarks

1 Retrieve with the visualization engine

quasi real time data from one UxV,

processes it and send it to the

visualization tool

The VT plots the data

properly

Success

2 Change the camera view for the scenario Data camera is

adjusted

Not tested Not implemented

2.6.1.10 Data Analysis Tool

Table 51: Verification test of the provision of an interface to the Analysis Engine by the Analysis Tool

Test ID: PT-DAA-T-001 Conducted by: Date: April 2017 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Analysis Tool will provide an interface to the Analysis Engine (DAE)

Preconditions  Working message bus

 Working schema registry

 Working Data Analysis Tool

Related Requirements PT-DAA-T-002, PT-DAA-T-001, PT-DAA-T-004, PT-DAA-T-005

Tools Used

Step Action Expected Result Status Remarks

1 User logs in to the web portal Login successful Success Note: there is still some

integration work required to

do SSO from the DAT

2 DAT queries available schemas from

Schema Registry

All schemas are

returned successfully

Success Works natively due to the

utilization of Landoop

registry query

3 DAT allows user to select the data they

want to work with as well as the machine

learning algorithm and hyper-parameters

Job is sent via REST

to the DAE

Success The DAT provides 1)

interface for user to enter

their own code (Zeppelin)

and 2) an interface to select

the schema (i.e. landoop

with rawfie adaptor).

 D6.3: RAWFIE Operational Platform Testing and Integration Report

65

Table 52: Verification test of the ability of the Analysis Tool to query available data schemas

Test ID: PT-DAA-T-002 Conducted by: Date: April 2017 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Analysis Tool will be able to query available data schemas

Preconditions  Working message bus

 Working schema registry

 Working Data Analysis Tool

Related Requirements PT-DAA-T-003

Tools Used

Step Action Expected Result Status Remarks

1 User logs in to the web portal Login successful Success Note: there is still some

integration work required to

do SSO from the DAT

2 DAT queries available schemas from

Schema Registry

All schemas are

returned successfully

Success Works natively as it is

supported by base Landoop

fork.

Table 53: Verification test of the ability of the Analysis Tool to read results from the results database

Test ID: PT-DAA-T-003 Conducted by: Date: April 2017 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Analysis Tool will be able to read results from the results database

Preconditions  Working message bus

 Working schema registry

 Working Data Analysis Tool

 Working results database [graphite]

Related Requirements PT-DAA-T-001, PT-DAA-T-005

Tools Used

Step Action Expected Result Status Remarks

1 User logs in to the web portal Login successful Success Note: there is still some

integration work required to

do SSO from the DAT

2 User builds job Job successfully built

(or error) and sent to

DAE

Success Zeppelin will alert user on a

failure. Furthermore, status

can be observed on Spark

page.

3 Results are shown in Results DB or error

is shown in Zeppelin

Job results are shown

as they are processed

via graphite UI /

shown in Zeppelin

interpreter

Success

66

2.6.2 Middle Tier (Services and Communication components)

2.6.2.1 Testbed Directory Service (IES)

Table 54: Verification test of the resources information retrieval and resources search

Test ID: TD01 Conducted by: IES Date: April 2017 Test

Category:

Verificati

on Tests

(Middle

Tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Retrieve resources information and search for specific resources

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service

When preparing the test, the test executor should know either the ID of the

resource he is looking for, or the criteria for selecting specific resources

Related Requirements PT-DIR-S-003, PT-DIR-S-004, PT-DIR-S-006

Tools Used SOAP UI or Web Browser

Ste

p

Action Expected Result Status Remarks

1.a The input JSON request is prepared,

specifying a testbed identifier (for the

/request/getResources() REST interface) or

a resource identifier (for the

/request/searchResource() REST interface),

or nothing in case the

/request/getAllResources() REST interface

is used

No error occurred.

The Testbed Directory

Service gives back a JSON

response message,

containing details about a

specific resource, the

resources belonging to the

specified testbed, or all

resource in case the

getAllResources() interface

is used

Success

2.a The /request/getAllResources() (without

parameters) or request/searchResource()
or request/getResources() (providing the

prepared JSON request in input) REST

interfaces can be called from the SOAP UI

Client Tool.

1.b The /request/resource/identifier/{id} REST

interface is called from the Browser,

specifying the id of a specific resource

No error occurred.

The Testbed Directory

Service gives back a JSON

response message,

containing detailed

information about the

resources matching the

search criteria

Success

2.b The /request/resource/name/{name} REST

interface is called, specifying the name of a

specific resource

3.b The

/request/resources?param1=value1¶m

2=value2¶m3=value3¶m4=value

4 REST interface is called, with one or more

query parameters according to the selected

search criteria, that is, a combination of one

or more of the following 4 possible search

parameters:

 resource_status

 resource_status_message

 resource_type

 health

 D6.3: RAWFIE Operational Platform Testing and Integration Report

67

Table 55: Verification tests for adding or removing a testbed facility

Test ID: TD02 Conducted by: IES Date: February

2016

Test Category:

Verification Tests

(Middle Tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Add / delete a testbed facility to RAWFIE

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service

When preparing the test for the testbed registration case, the test executor

should know the information about the testbed to be inserted. In case of a

testbed deletion, the testbed id must be known in advance

Related Requirements PT-DIR-S-005

Tools Used SOAP UI

Step Action Expected Result Status Remarks

1.a The input JSON request is prepared, with

the information about the new testbed to

be added

No error occurred.

And the information

about the new testbed

is from now on

available in the

Master Data

Repository, as it can

be verified by using

the getAllTestbeds()

or other REST

interfaces for

Testbeds searches

(see TD04)

Success

2.a The /request/createTestbed() REST

interface is called from the SOAP UI

Client Tool, specifying the testbed

information in the input JSON request

1.b The input JSON message request is

prepared, with the unique id of the testbed

facility to be deleted

No error occurred.

And the information

about the deleted

testbed (and related

resources) is not

available anymore in

the Master Data

Repository, as it can

be verified by using

the getAllTestbeds()

or other REST

interfaces (see TD04

in the following)

Success

2.b The /request/deleteTestbed() REST

interface is called from the SOAP UI

Client Tool, specifying the information

about the testbed to be deleted in the

provided input JSON request

Success

68

Table 56: Verification test of the registration or removal of a new UxV node into a testbed facility

Test ID: TD03 Conducted by: IES Date: February

2016

Test Category: Verification

Tests (Middle Tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Register / delete an UxV node into a testbed facility

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service.

When preparing the test, the test executor should know either the ID of the

testbed he is looking for, or the list criteria for selecting specific testbeds

Related Requirements PT-DIR-S-007

Tools Used SOAP UI

Step Action Expected Result Status Remarks

1.a The input JSON message request is

prepared, with all information about the

new resource to be added (and the unique

id of the testbed facility it belongs to)

No error occurred.

And the information

about the new

resource (UxV node)

is from now on

available in the

Master Data

Repository, as it can

be verified by using

the getAllResources()

or other REST API

for Resources

searches (see previous

tests TD01)

Success

2.a The /request/createResource() REST

interface is called from the SOAP UI

Client Tool, specifying the information

about the resource to be added in the

provided input JSON request

1.b The input JSON message request is

prepared, with the unique id of the

resource to be deleted and of the testbed

facility it belongs to

No error occurred.

And the resource

(UxV node) is not

available anymore in

the Master Data

Repository, as it can

be verified by using

the getAllResources()

or other REST API

(see previous tests

TD01)

Success

2.b The /request/deleteResource() REST

interface is called from the SOAP UI

Client Tool, specifying the information

about the resource to be deleted in the

provided input JSON request

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

69

Table 57: Verification test of the testbeds information retrieval and testbeds search

Test ID: TD04 Conducted by: IES Date:

April

2017

Test

Category:

Verification

Tests

(Middle

Tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Retrieve testbed information and search for specific testbeds

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory Service

When preparing the test, the test executor should know the ID of the testbed he is looking

for, or it can just provide one or a set of search criteria

Related Requirements PT-DIR-S-001, PT-DIR-S-002, PT-DIR-S-006

Tools Used

Step Action Expected

Result

Status Remarks

1.a The /request/getAllTestbeds() REST interface is called from the SOAP

UI Client Tool, without any specific testbed information (null JSON

input request)

No error

occurred.

The Testbed

Directory

Service gives

back a JSON

response

message,

containing

details about

all registered

testbeds and

all resources

belonging to

each of them

Success

1.b The input JSON request is prepared, specifying a testbed identifier (for

the request/searchTestbed() REST interface)

No error

occurred.

The Testbed

Directory

Service gives

back a JSON

response

message,

containing

details about

the requested

testbed

Success

2.b The /request/searchTestbed() REST interface is called from the SOAP

UI Client Tool, using the abovementioned JSON as input message

request

1.c The /request/testbed/identifier/{id} REST interface is called from the

Browser, specifying the id of a specific testbed

No error

occurred.

Success

2.c The /request/testbed/name/{name} REST interface is called,

specifying the name of a specific testbed

70

3.c The

/request/testbeds?param1=value1¶m2=value2¶m3=value3

REST interface is called, with one or more query parameters

according to the selected search criteria, that is, a combination of one

or more of the following 3 possible search parameters:

 health

 testbedstatusmessage

 srid

The Testbed

Directory

Service gives

back a JSON

response

message,

containing

details about

the available

testbeds

conforming to

the search

criteria

Success

4.c The /request/testbed/uav REST interface is called, looking for all

testbeds supporting UAV resources

Success

5.c The /request/testbed/ugv REST interface is called, looking for all

testbeds supporting UGV resources

Success

6.c The /request/testbed/usv REST interface is called, looking for all

testbeds supporting USV resources

Success

7.c The /request/testbed/auv REST interface is called, looking for all

testbeds supporting AUV resources

Success

2.6.2.2 EDL Compiler and Validator

Table 58: Verification test of the Experiments compilation

Test ID: ECV01 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Compile Experiments

Preconditions  User entered in the RAWFIE Portal

Related Requirements PT-CPV-001, PT-CPV-002, PT-CPV-003, PT-CPV-004, PT-EXV-S-001, PT-

EXV-S-002, PT-EXV-S-003

Tools Used

Step Action Expected Result Status Remarks

1 Access to the authoring tool through the

RAWFIE Web Portal

Redirection to the

editors interface

Success

2 Write a simple experiment

The experiment

workflow is

presented in the

available editors

Success

3 Compile the experiment The necessary files

required by the

remaining RAWFIE

components are

produced

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

71

Table 59: Verification test of the Experiments validation

Test ID: ECV02 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Validate Experiments

Preconditions  User entered in the RAWFIE Portal

Related Requirements PT-CPV-001, PT-CPV-002, PT-CPV-003, PT-CPV-004, PT-EXV-S-001, PT-

EXV-S-002, PT-EXV-S-003

Tools Used 

Step Action Expected Result Status Remarks

1 Access to the authoring tool through the

RAWFIE Web Portal

Redirection to the

editors interface

Success

2 Write a simple experiment The experiment

workflow is

presented in the

available editors

Success

3 Validate the experiment Validation is

performed and error /

warning messages are

presented in the

editors

Success

2.6.2.3 Users & Rights Service

Table 60: Verification test of the Users & Rights Service login checking

Test ID: URS01 Conducted by:

Fraunhofer

Date: April 2017 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Login checking

Preconditions  Valid user name and password known

Related Requirements  PT-USR-S-001

Tools Used  SOAPUI REST client

Step Action Expected Result Status Remarks

1 invalid user name and password sent to

the Users & Rights Service

Users & Rights

Service returns

failure

Success

2 valid user name and password sent to the

Users & Rights Service

Users & Rights

Service returns OK

Success

72

Table 61: Verification test of the Users & Rights Service roles/rights checking

Test ID: URS02 Conducted by:

Fraunhofer

Date: April 2017 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Roles/rights checking

Preconditions  User with the tested roles is available

Related Requirements PT-USR-S-002

Tools Used  SOAPUI REST client

Step Action Expected Result Status Remarks

1 Role request with not available roles for a

user is sent to the Users & Rights Service

Users & Rights

Service returns

failure

Success

2 Role request with available roles for a

user is sent to the Users & Rights Service

Users & Rights

Service returns OK

Success

Table 62: Verification test of the user rights checks

Test ID: URS03 Conducted by:

Fraunhofer

Date: April 2017 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Check user rights

Preconditions  Valid user rights known

Related Requirements PT-USR-S-001, PT-USR-S-002, PT-USR-S-003

Tools Used  SOAPUI REST client

Step Action Expected Result Status Remarks

1 user ID and available required rights sent

to the Users & Rights Service

Users & Rights

Service return true

Success

2 user ID and not available required rights

sent to the Users & Rights Service

Users & Rights

Service return false

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

73

2.6.2.4 Booking Service

Table 63: Verification test of Booking Service add reservation functionality

Test ID: BS01 Conducted by: HAI Date: February

2017

Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Service add reservation functionality

Preconditions  Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource Reservation)

 User initiating the call is a valid experimenter

Related Requirements PT-BOO-S-001 (experiment level booking)

PT-BOO-S-002

PT-BOO-S-004

PT-BOO-S-005

PT-BOO-S-007

PT-BOO-S-011

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Booking Tool UI

Step Action Expected Result Status Remarks

1 Call addReservation() providing a

datetime interval that has passed

response should be

returned with a proper

failure message

Success

2 Call addReservation() providing a

datetime interval in the future

(NO conflict in requested resources

with existing reservation at the same

time)

Appropriate MasterDB

tables are updated (new

reservation in

status=PENDING)

Success

 If email sending is

enabled then email is

send to both the creator

and the testbed operator

of the reserved resources

Success

 The returned response

contains the newly

created reservationId and

the reservation status

Success

3 Call addReservation() providing a

datetime interval in the future

conflict in requested resources with

existing reservation at the same time)

response should be

returned with a proper

failure message

Success

74

Table 64: Verification test of Booking Service edit reservation functionality

Test ID: BS02 Conducted by: HAI Date: February

2017

Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Service edit reservation functionality

Preconditions  Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

 User initiating the call is a valid experimenter

Related Requirements PT-BOO-S-002

PT-BOO-S-005

PT-BOO-S-007

Tools Used Booking Tool UI

Step Action Expected Result Status Remarks

1 Call editReservation() providing

appropriate ReservationData which

should include the reservationId

(the call should include credentials

about the user initiating it)

If provided user

credentials do not match

with the ones of the

reservation owner then a

proper failure message is

returned

Success

 If existing reservation

status!= PENDING then

no update should be

possible and a proper

failure message is

returned

Success

 If time related changes

refer to an interval in the

past then a proper failure

message is returned

Success

 (If status= PENDING & user credential

match)

If overlaps with existing

reservation are

introduced and resources

conflicts are detected

then a proper failure

message is returned

Success

 (If status= PENDING & user credential

match)

If no resources conflicts

are detected the changes

are accepted and the

corresponding DB tables

updated

Success

2 Repeat step 1 with different kind of

changes related to timeslots and

resource selection

Ensure that expected

results are respected as

described in step 1

Success Success of reservation edit

depends on whether

overlaps introduce conflicts

according to the steps

described in step 1

 D6.3: RAWFIE Operational Platform Testing and Integration Report

75

Table 65: Verification test of Booking Service approve reservation functionality

Test ID: BS03 Conducted by: HAI Date: February

2017

Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Service approve reservation functionality

Preconditions  Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002

PT-BOO-S-005

PT-BOO-S-007

PT-BOO-S-011

PT-NF-002

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Booking Tool UI

Step Action Expected Result Status Remarks

1 Call approveReservation()

(the call should include credentials

about the user initiating it)

If provided credentials do

not match with an

authorized platform user

then a proper failure

message is returned

Success

 If provided credentials do

not refer to an authorized

platform user with

role=TESTBED_OP then

a proper failure message

is returned

Success

 If reservationId refers to a

reservation with status

!=PENDING then a

proper failure message is

returned

Success

 If reservationId refers to a

past reservation then then

a proper failure message

is returned

Success

 If conflicts are detected

with any other

APPROVED reservation

then then a proper failure

message is returned

Success

2 (If status= PENDING &

caller=TESTBED_OP & no conflicts

detected

Status change is accepted

and corresponding DB

tables updated

Success

 An email is send to the

owner of the reservation

Success

 A ReservationStatusMsg

is send to Message bus

Success

76

Table 66: Verification test of Booking Service reject reservation functionality

Test ID: BS04 Conducted by:

HAI

 Date: February

2017

Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Service reject reservation functionality

Preconditions  Master DB is prepopulated with reservations of different status and timeslots

(involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002

PT-BOO-S-005

PT-BOO-S-007

PT-BOO-S-011

PT-NF-002

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Booking Tool UI

Step Action Expected Result Status Remarks

1 Call approveReservation()

(the call should include

credentials about the user

initiating it)

 If provided credentials

do not match with an

authorized platform

user then a proper

failure message is

returned

Success

 If provided credentials

do not refer to an

authorized platform

user with

role=TESTBED_OP

then a proper failure

message is returned

Success

 If reservationId refers

to a reservation with

status !=PENDING or

APPROVED then a

proper failure message

is returned

Success

 If reservationId refers

to a past reservation

then then a proper

failure message is

returned

Success

2 (If status= PENDING &

caller=TESTBED_OP

 Status change is

accepted and

corresponding DB

tables updated

Success

 An email is send to the

owner of the

reservation

Success

 A

ReservationStatusMsg

is send to Message bus

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

77

Table 67: Verification test of Booking Service delete reservation functionality

Test ID: BS05 Conducted by: HAI Date: February

2017

Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Service delete reservation functionality

Preconditions  Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002

PT-BOO-S-005

PT-BOO-S-007

PT-NF-002

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Booking Tool UI

Step Action Expected Result Status Remarks

1 Call deleteReservation()

(the call should include credentials

about the user initiating it)

If provided credentials do

not match with an

authorized platform user

then a proper failure

message is returned

Success

 If reservationId refers to a

past reservation then a

proper failure message is

returned

Success

 If reservationId refers to a

reservation with

resources involved in a

currently running

experiment a proper

failure message is

returned

Success

 If none of the above then

status change to

CANCELLED

Success

78

Table 68: Verification test of Booking Service retrieve reservation(s) functionality

Test ID: BS06 Conducted by: HAI Date: February

2017

Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Service retrieve reservation(s) functionality

Preconditions  Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002

PT-BOO-S-008

Tools Used HttpRequestor Firefox plugin

Step Action Expected Result Status Remarks

1 Call getReservation() providing a

reservationId

Inspect response and

ensure data is inline with

the information stored in

the MasterDB

Success

2 Call getReservations() providing

appropriate search criteria (time, user

etc.)

Inspect response and

ensure data is in line with

the information stored in

the MasterDB

Success

Table 69: Verification test of Booking Service check for conflicts functionality

Test ID: BS07 Conducted by: HAI Date: February

2017

Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Service check for conflicts functionality

Preconditions  Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002

PT-BOO-S-008

Tools Used HttpRequestor Firefox plugin

Step Action Expected Result Status Remarks

1 Call

checkForConflictingReservations()

providing proper reservation data info

Returns true or false

depending on whether

resource conflicts are

detected for time

overlapping with pre-

existing in the MasterDB

reservations

Success

2 Call getReservations() providing

appropriate search criteria (time, user

etc.)

Inspect response and

ensure data is in line with

the information stored in

the MasterDB

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

79

Table 70: Verification test of Booking Service simultaneous reservations support

Test ID: BS08 Conducted by: HAI Date: February

2017

Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Booking Service simultaneous reservations support

Preconditions  Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002

PT-BOO-S-009

Tools Used soapUI

Step Action Expected Result Status Remarks

1 Multiple calls of Booking Service

addReservation() method

(execute BS01 multiple times

simultaneously from different clients)

Ensure that all requests

are processed and

multiple reservations are

created in the MasterDB

Success

80

2.6.2.5 Launching Service

Table 71: Verification test of the Launching Service manual start (short term launching)

Test ID: LS01 Conducted by: HAI Date: March 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Experiment short term launching

Preconditions  Requires the Message Bus and the experiment controller to be accessible.

 The master data repository should contain reservations for the user and for a

defined experiment (involved tables are Experiment

Experiment_Execution., Reservation, Reservation_item)

Related Requirements PT-LAU-S-001

PT-LAU-S-003

PT-LAU-S-004

PT-LAU-S-005

PT-LAU-S-007

PT-LAU-S-008

PT-LAU-S-009 (by design)

PT-LAU-S-012

PT-LAU-S-013 (by design)

Tools Used Experiment Authoring Tool UI

Maven, Java test client, HttpRequestor Firefox plugin

Step Action Expected Result Status Remarks

1 User call manualStart() providing

an experiment Id

if experimentId is not present in

the MasterDB then a proper

failure message is returned

Success

 If supplied user credentials do

not match an authorized user

then a proper failure message is

returned

Success

 If supplied user credentials

match an authorized user but

refer to booked resources of

another user then a proper

failure message is returned

Success

2 (case experimentId exists) if an executionId already exists

and refers to a running

experiment (status=Ongoing)

then a proper failure message is

returned

Success

3 (case no executionId exists or

exists for an status!=Ongoing)

Launching service generates an

ExperimentStartRequest to the

Message Bus (targeting the

Experiment Controller).

Success

 Master DB tables are properly

updated (tables

Experiment_Execution,

Reservation_item)

Success

 LaunchingServiceActionResp

json message is returned

containing the generated

executionId and the status of the

experiment

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

81

Table 72: Verification test of the Launching Service schedule (long term launching)

Test ID: LS02 Conducted by: HAI Date: March 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Experiment long term launching

Preconditions  Requires the Message Bus and the experiment controller to be accessible.

 The master data repository should contain reservations for the user and for a

defined experiment (involved tables are Experiment Experiment_Execution.,

Reservation, Reservation_item)

 The platform launching scheduler must be running

Related Requirements PT-LAU-S-002

PT-LAU-S-003

PT-LAU-S-004

PT-LAU-S-005

PT-LAU-S-007

PT-LAU-S-008

PT-LAU-S-009 (by design)

PT-LAU-S-012

PT-LAU-S-013 (by design)

PT-BOO-S-011

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Step Action Expected Result Status Remarks

1 User call schedule() providing

experimentId, startDate,

endDate

if experimentId is not present in the

MasterDB then a proper failure

message is returned

Success

 If supplied user credentials do not

match an authorized user then a proper

failure message is returned

Success

 If supplied user credentials match an

authorized user but refer to booked

resources of another user then a proper

failure message is returned

Success

 If startDate or, endDate refer to past

time then a proper failure message is

returned

Success

 If startDate or endDate are not

contained within the timeslot defined

for the associated reservation then a

proper failure message is returned

Success

 if an executionId already exists and

refers to a running experiment

(status=Ongoing) then a proper failure

message is returned

Success

2 Scheduling part

(case all preconditions are

met)

Launching Scheduler is called and a

job is added to be launched at the

specified startDate

Success

 The user (owner) of the experiment and

the testbed operator are informed by an

appropriate notification (email)

Success

 Master DB tables are properly updated

(tables Experiment_Execution,

Reservation_item). The status of the

experiment should be BOOKED

Success

82

 LaunchingServiceActionResp json

message is returned containing the

generated executionId and the status of

the experiment

Success

3 Execution part

(check Launching Service

activity when startDate

arrives)

Master DB tables are properly updated

(tables Experiment_Execution,

Reservation_item)The status of the

experiment changes to ONGOING

Success

 Launching service generates an

ExperimentStartRequest to the Message

Bus (targeting the Experiment

Controller).

Success

 Scheduled job (for the executionId) is

removed from scheduler

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

83

Table 73: Verification test of the Launching Service cancellation request

Test ID: LS03 Conducted by: HAI Date: March 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Experiment cancellation request

Preconditions  Requires the Message Bus and the experiment controller to be accessible.

 The master data repository should contain reservations for the user and for a

defined experiment (involved tables are Experiment

Experiment_Execution., Reservation, Reservation_item)

 An experiment should be schedule for a future time

Related Requirements PT-LAU-S-009 (by design)

PT-LAU-S-010

PT-LAU-S-012

PT-LAU-S-013 (by design)

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Step Action Expected Result Status Remarks

1 User call cancellation()

providing an executionId

if executionId is not present in the

MasterDB then a proper failure

message is returned

Success

 If supplied user credentials do not

match an authorized user then a proper

failure message is returned

Success

 If supplied user credentials match an

authorized user but refer to an

experiment of another experimenter

then a proper failure message is

returned

(Exception to this rule if credentials

refer to a testbed operator or

administrator)

Success

2 (case executionId exists) If the experiment is already running

(status= ONGOING) then cancellation

is not possible and a proper failure

message is returned

Success

 If no schedule job is found in

Launching scheduler then a proper

failure message is returned

Success

3 (executionId exists and the

execution is still in the

scheduler)

Job is removed from the scheduler Success

 Master DB tables are properly updated

(tables Experiment_Execution,

Reservation_item). The status of the

experiment changes to CANCELLED

Success

 LaunchingServiceActionResp json

message is returned containing with

the executionId, status= CANCELLED

and empty message field

Success

 The user (owner) of the experiment

and the testbed operator are informed

by an appropriate notification (email)

Failure Functionality not

implemented

84

Table 74: Verification test of Launching Service simultaneous launching capability

Test ID: LS04 Conducted by: HAI Date: March 2017 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Launching Service simultaneous launching capability

Preconditions  Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-LAU-S-006

Tools Used soapUI

Step Action Expected Result Status Remarks

1 Multiple calls of Launching Service

schedule() method

(execute LS01 multiple times

simultaneously from different clients)

Ensure that all requests

are processed multiple

experiments executions

exist in the Job Scheduler

Success

2.6.2.6 Visualisation Engine

Table 75: Visualisation engine user request handling

Test ID: VE01 Conducted by: Aberon Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: User request handling

Preconditions  Requires visualization tool and visualization engine to function and be

accessible

Related Requirements VIS01, VIS02

Tools Used

Step Action Expected Result Status Remarks

1 Visualization engine receive through

websocket request from visualization

tool

The visualization engine

handles the request

Success

2 Visualization engine sends through

websocket the response

Visualization tool receives

response

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

85

Table 76: Visualization engine geospatial data modification

Test ID: VE02 Conducted by: Aberon Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Geospatial data modification t

Preconditions  Requires visualization tool and visualization engine to function and be

accessible

Related Requirements VIS01,VIS02

Tools Used

Step Action Expected Result Status Remarks

1 Visualization engine receive through

the message bus

The visualization engine

handles the request

Success

2 Visualization engine update data in

database

Data is properly stored in

the database for future

retrieval

Success

Table 77: Visualization engine camera interaction

Test ID: VE03 Conducted by: Aberon Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Camera interaction

Preconditions  Requires visualization tool and visualization engine to function and be

accessible and the UxV to send video data

Related Requirements VIS01

Tools Used

Step Action Expected Result Status Remarks

1 Visualization engine receive request

from visualization tool to start the

camera stream

Visualization engine

forward this request to the

UxV

Not tested Not implemented yet

86

2.6.2.7 Data Analysis Engine

Table 78: Verification test of the ability of the Analysis Engine to query message bus streams &
schemas from the schema registry

Test ID: PT-DAA-E-001 Conducted by: HESSO Date: April 2017 Test Category: Verification

Tests (front end tier)

Hardware Configuration Hardware will be provisioned via Ansible and will conform to the Spark

Requirements.

Software Configuration  Spark 2.0

 Graphite 0.10.0

 Confluent 3.0

 Zeppelin 0.8

Test Name: Analysis Engine will be able to query message bus streams & schemas from

the schema registry

Preconditions  Working message bus

 Working schema registry

 Working Data Analysis Tool

Related Requirements PT-DAA-S -001, PT-DAA-S -002

Tools Used Spark, Landoop Schema Registry w/ RAWFIE Adaptor , Graphite, Grafana

Step Action Expected Result Status Remarks

1 User deploys job via CLI or via web portal

in ipython-style notebooks

1) DAE checks if job

is a pre-existing jar,

else compiles a new

one

2) Zeppelin packages

notebook

Success

2 DAE verifies schema from registry and

starts a spark job that acquires data from

the message bus

The job is

successfully build and

uploaded to the job

server

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

87

Table 79: Verification test of the ability of the Analysis Engine to receive messages from the Analysis
Tool

Test ID: PT-DAA-E-002 Conducted by: HESSO Date: Test Category: Verification

Tests (front end tier)

Hardware Configuration  Hardware will be provisioned via Ansible and will conform to the Spark

Requirements.

Software Configuration  Spark 2.0, Graphite 0.10.0, Confluent 3.0, Zeppelin 0.8

Test Name: Analysis Engine will be able to receive messages from the Analysis Tool

Preconditions  Working message bus

 Working schema registry

 Working Data Analysis Tool

Related Requirements PT-DAE-001 (PT-DIR-S-001)

Tools Used

Step Action Expected Result Status Remarks

1 User builds a job on the Data Analysis

Tool

Job is successfully

checked for errors

Success

2 Data Analysis Engine receives job via

REST and builds a job

The job is

successfully compiled

(or an error returned)

Success Provided natively by

Zeppelin

3 Data Analysis Engine builds job and sends

data to Spark

The job is converted

to a JAR if using the

CLI; otherwise the job

is packaged by

Zeppelin

Success

Table 80: Verification test of the ability of the Analysis Engine to write data to the results database

Test ID: PT-DAA-E-003 Conducted by: HESSO Date: Test Category: Verification

Tests (front end tier)

Hardware Configuration  Hardware will be provisioned via Ansible and will conform to the Spark

Requirements.

Software Configuration  Spark 2.0

 Graphite 0.10.0

 Confluent 3.0

 Zeppelin 0.8

Test Name: Analysis Engine will be able to write data to the results database

Preconditions  Working message bus

 Working schema registry

 Working Data Analysis Engine

 Working Graphite Instance

Related Requirements PT-DIR-S-002

Tools Used

Step Action Expected Result Status Remarks

1 User builds a job and the jar is uploaded to

the spark / user writes custom code in

Zeppelin

Job is uploaded

successfully and the

job is registered in

spark

Success

2 Spark Engine sends results to the Graphite

instance as it processes the data

Graphite displays a

runtime stream of

processed data

Success

88

2.6.2.8 System Monitoring Service

Table 81: Verification test of the System Monitoring

Test ID: SYMS01 Conducted by:

Fraunhofer

Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: System Monitoring

Preconditions 

Related Requirements PT-SYM-S-001, PT-SYM-S-002

Tools Used Browser

Step Action Expected Result Status Remarks

1 Service polls the computes of the

middle tier for their status

Computes return their

health status to the service

Success

2 Service listen to status messages on

the message bus

Testbed component sent

automatically status

information on the message

bus. Messages received by

the service

Success

3 System Monitory Tool request status

information

Service collects the

information and returns it

Success

Table 82: Verification test of the System Monitoring Problem Notifications

Test ID: SYMS02 Conducted by:

Fraunhofer

Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: System Monitoring Problem Notifications

Preconditions  Notification receivers are configured

 Status information is collected

Related Requirements PT-SYM-S-003

Tools Used SSH client,

Browser

Email client

Step Action Expected Result Status Remarks

1 Problem occurred (server down etc.) Services send email

notifications of the

configured receivers.

Failure Emails currently not

configured

2 System Monitory Tool request status

information

Problems are visualized in

the System Monitory Tool

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

89

2.6.2.9 Accounting Service

Table 83: Verification test of the Accounting data collection

Test ID: ACCS01 Conducted by:

Fraunhofer

Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Accounting data collection

Preconditions  Accounting data is empty for the used user

Related Requirements PT-ACC-S-002, PT-ACC-S-003

Tools Used Browser

Email client

Step Action Expected Result Status Remarks

1 Experiment is completed.

Notifications sent on the message bus.

Accounting received the

event and computes the

charge for the experiments

Not tested Not implemented

2 Billing period ends Bill is sent to the user Not tested Not implemented

90

2.6.2.10 Experiment Controller

Table 84: Verification test of Experiment Controller workflow

Test ID: EC01 Conducted by: CERTH Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration Java 8

Test Name: Execute experiment workflow

Preconditions  Requires web portal to be functioning and accessible.

 The experimenter has already created the script for the experiment of

interest

 The chosen resource must be completely available and ready to use

 Requires RAWFIE DB to be properly defined and continuously accessible

Related Requirements PT-EXP-C-001, PT-EXP-C-002, PT-EXP-C-003, PT-EXP-C-004, PT-EXP-C-

005, PT-EXP-C-006, PT-EXP-C-007

Tools Used

Step Action Expected Result Status Remarks

1 The experimenter forwards the script

to the Experiment Controller in order

to start or barely execute the next

action of the resource mission

Successful forwarding and

start of execution

Success

2 The instructions are forwarded to the

corresponding testbed facility

Testbed facility received the

instructions correctly

Success

3 The resource receives the new set of

instructions as generated from the

script for overriding the experiment

workflow

The resource overrides its

current experiment

according to the new

instructions

Success

4 The Experiment Controller supports

the execution of experiments that

involve multiple testbeds

Simultaneous visualization

of different experiment on

different locations

Not

Tested

5 Update the status of a running

experiment inside the database

The status update can be

utilized by any RAWFIE

component

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

91

2.6.3 Testbed Tier (Testbeds and Resources control components)

2.6.3.1 Monitoring Manager

Table 85: Verification test of Monitoring Activity

Test ID: MM01 Conducted by: HAI Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration Testbed site PC

Software Configuration  Java 8

 Confluent Platform 2.01

Test Name: Check Monitoring Activity

Preconditions  Requires the resource controller to be accessible.

 Requires the network controller to be accessible.

 Requires the data tier to be accessible.

Related Requirements PT-SYM-T01, TB-MOM-001, TB-MOM02, TB-MOM-003, TB-MOM-004

Tools Used

Step Action Expected Result Status Remarks

1 The Monitoring Manager‘checks’ the

status of the resources through the

Resource Controller.

The Resource Controller

informs the Monitoring

Manager for malfunctions

of the status of UxVs

Success Monitoring Manager

implemented as

subcomponent of Testbed

Manager application. The

use of message bus from

UxVs enables the direct

consumption of messages

relevant to resources

statuses from Monitoring

Manager without the

intervention of Resource

Controller

2 Monitoring Manager periodically

forwards the messages to the message

bus

Topics about the UxVs

system status are updated by

Monitoring Manager

Not

Tested

Messages relevant to

UxVs statuses are directly

produced from UxVs in

the message bus and are

accessible from all

components without the

intervention of Monitoring

Manager

92

2.6.3.2 Network Controller

Table 86: Verification test of network interface switching due to connectivity problems

Test ID: NC01 Conducted by: CSEM Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.3

Software Configuration See section 2.3.3

Test Name: Switch network interface due to connectivity problem

Preconditions  Requires the Testbed Manager to be accessible

Related Requirements TB-NEC-001, TB-NEC-003, TB-NEC-004

Tools Used

Step Action Expected Result Status Remarks

1 The Network Controller ‘checks’ the

connectivity of the resources through

the Resource Controller.

The Resource Controller

informs the Network

Controller for malfunctions

in the network connectivity

of the resources.

Not

Tested

Component

implementation not

complete

2 The Network Controller receives the

incoming messages from the Resource

Controller.

The appropriate network

interface is selected.

Not

Tested

Component

implementation not

complete

 D6.3: RAWFIE Operational Platform Testing and Integration Report

93

2.6.3.3 Resource Controller (plus Navigation Service sub-component)

Table 87: Verification test of Connection and of Accuracy validation of the given Instructions

Test ID: RC01 Conducted by: CERTH Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration Testbed site PC

Software Configuration Java 8

Test Name: Connection Test and Validation of the Accuracy of the Given Instructions

Preconditions  The proxy should be connected to the testbed

 Experiment Controller must be up and running

 Requires the UxV to be ready to operate

Related Requirements PT-LAU-S-001, TB-PRO-001, PT-EXP-C-001, TB-MAN-001, TB-MAN-004,

TB-MAN-002, TB-MAN-003, TB-MAN-005

Tools Used

Step Action Expected Result Status Remarks

1 Receive instructions from the

Experiment Controller

Instructions received Success

4 Send basic instructions to the UxVs The UxV follows the

instruction correctly, in

order and timely, according

to the specified parameters.

Success

5 Transmit information about the

progress of the current experiment

back to the Experiment Controller

The experiment controller

successfully receives the

status of the experiment and

updates the corresponding

fields on the database

Success

94

2.6.3.4 UxV Proximity component

Table 88: Verification test of Proximity component Backup communication

Test ID: UxP01 Conducted by: CSEM Date: April 2017 Test Category: Verification

Tests (UxV tier)

Hardware Configuration UxV with Proximity component (CSEM WiseNode)

Software Configuration UxV Embedded OS + CSEM WiseNET

Test Name: Backup communication

Preconditions  UxV are equipped with the Proximity component

Related Requirements PT-GEN-001, PT-P-001, PT-P-003, PT-A-001, PT-A-003, PT-A-004, PT-A-

005, PT-A-006, PT-A-007, ,PT-A-009, ,PT-A-014, PT-A-016, PT-B-001, PT-

L-002, PT-E-002, PT-E-003, TB-G-004, TB-G-006, TB-I-001, TB-G-013, TB-

D-001

Tools Used

Step Action Expected Result Status Remarks

1 The UxVs are booked, the experiment is

programmed and started.

 Ok Tested in another context

2 The UxVs lose the connection with the

primary RAWFIE communication system

The Proximity

communication

system takes over

Not Tested Component implemented

and unit-tested but

integration with the UxVs

still on-going.

3 The UxVs act autonomously, following

the loaded mission instructions, logging

all motion parameters, exchanging

information across the swarm

The UxV use the

Proximity

communication

system.

Not Tested Component implemented

and unit-tested but

integration with the UxVs

still on-going.

4 The UxVs come back and the logged

information is analysed

The communication

statistics exhibits low

packet error rate and

low latency

Not Tested Component implemented

and unit-tested but

integration with the UxVs

still on-going.

 D6.3: RAWFIE Operational Platform Testing and Integration Report

95

Table 89: Verification test of UxV retrieval using the communication system of the Proximity
component

Test ID: UxP02 Conducted by: Date: April 2017 Test Category: Verification

Tests (UxV tier)

Hardware Configuration UxV with Proximity component (CSEM WiseNode)

Software Configuration UxV Embedded OS + CSEM WiseNET

Test Name: UxV retrieval

Preconditions  UxV are equipped with the Proximity component

Related Requirements PT-GEN-001, PT-P-001, PT-P-003, PT-A-001, PT-A-003, PT-A-004, PT-A-

005, PT-A-006, PT-A-007, ,PT-A-009, ,PT-A-014, PT-A-016, PT-B-001, PT-

L-002, PT-E-002, PT-E-003, TB-G-004, TB-G-006, TB-I-001, TB-G-013, TB-

D-001

Tools Used

Step Action Expected Result Status Remarks

1 The UxVs are booked, the experiment is

programmed and started.

 Ok Tested in another context

2 The UxVs perform their mission and one

of them exhausts its main power source

 Not tested

3 The other UxVs uses the Proximity

component communication systems to

communicate and locate the stopped UxV

The connection is

established with the

stopped UxV and the

collected information

allows for locating it

Not tested

4 The other UxVs transmit the location and

status of the stopped UxV to the

RAWFIE resource manager

 Not tested

Table 90: Verification test of Swarm motion using the Proximity component

Test ID: UxP03 Conducted by: Date: April 2017 Test Category: Verification

Tests (UxV tier)

Hardware Configuration UxV with Proximity component (CSEM WiseNode)

Software Configuration UxV Embedded OS + CSEM WiseNET

Test Name: Swarm motion

Preconditions  UxV are equipped with the Proximity component.

 Acceptable margin for the relative location of UxV is defined depending

on the type of UxV and the scenario dynamics.

Related Requirements PT-GEN-001, PT-P-001, PT-P-003, PT-A-001, PT-A-003, PT-A-004, PT-A-

005, PT-A-006, PT-A-007, ,PT-A-009, ,PT-A-014, PT-A-016, PT-B-001, PT-

L-002, PT-E-002, PT-E-003, TB-G-004, TB-G-006, TB-I-001, TB-G-013, TB-

D-001

Tools Used

Step Action Expected Result Status Remarks

1 The UxVs are booked, the experiment is

programmed and started.

 Ok Tested in another context

2 The UxVs perform their mission moving

in a coordinated fashion

 Not tested

3 The UxVs log all position Not tested

4 The UxVs come back and the logged

information is analysed

The UxV relative

locations were within

the acceptable margin

Not tested

96

2.6.3.5 Testbed Manager

Table 91: Verification test of Testbed Manager Experiment Handling

Test ID: TM01 Conducted by: HAI Date: April 2017 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details Testbed site PC

Software Configuration Details  Java 8

 Confluent Platform 2.01

 PostgreSQL 9.4

Test Name: Testbed Manager Experiment Handling

Preconditions  Requires middle tier to be accessible (Experiment Controller Service)

 Requires Resource Controller running at Testbed

 Requires local PostgreSQL Server accessible

Related Requirements TB-MAN-004

TB-MAN-001

TB-MAN-005

TB-MAN-007

Tools Used

Step Action Expected Result Status Remarks

1 Start Testbed Manager Testbed manager

successfully initialized

Successful connection to the

local (testbed site) database

server

Success

2 Testbed Manager receives an

ExperimentStart message from

Message Bus

A new experiment is

registered in the local

database. Testbed Manager

rejects experiments not

intended for this testbed

Success

3 Testbed Manager receives an

ExperimentStop message from

Message Bus

The experiment is registered

as successful in the

experiments history log in

the local database

Not

Tested

The end of the experiment

is perceived from Testbed

Manager through the

consumption of

ExperimentStatusMsg

message received from

Resource Controller. The

expected result was

achieved using this

message

4 Testbed Manager receives an

ExperimentCancel message from

Message Bus

The experiment is registered

as failed / partially

completed in the experiments

history log in the local

database

Not

Tested

The cancellation of the

experiment is perceived

from Testbed Manager

through the consumption

of ExperimentStatusMsg

message received from

Resource Controller. The

expected result was

achieved using this

message

5 User selects to see the experiments

executed in the testbed

Information about the

experiments executed in the

testbed is retrieved from the

local database (experiments

log) and shown in the

relevant window

Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

97

Table 92: Verification test of Experiment management without middle-tier connection

Test ID: TM02 Conducted by: Date: April 2017 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details See section 2.3.3

Software Configuration Details See section 2.3.3

Test Name: Manage the experiments without middle-tier connection

Preconditions  Requires local PostgreSQL Server accessible

Related Requirements TB-MAN-008

Tools Used

Step Action Expected Result Status Remarks

1 User starts Testbed Manager

application in testbed site

Testbed manager

successfully initialized

Successful connection to the

local (testbed site) database

server

Not

Tested

2 Connection with middle-tier is lost

(observed by absence of ECStatus

messages received from

Experiment controller in message

bus)

 Not

Tested

3 Testbed manager informs Resource

Controller and initiates local

storage mode

Resource controller enters in

“emergency” mode

Resource controller stores all

sensor data from current

active UxVs missions in the

local database

Not

Tested

4 Connection with middle-tire is

restored

Resource controller returns

to normal mode and all

sensor data are directed to

RAWFIE master database

Not

Tested

5 Testbed manager sends all locally

stored sensor data in the master

database

Master database is updated

with the missing data during

middle-tier connection loss

Not

Tested

98

Table 93: Verification test of Check Testbed health status

Test ID: TM03 Conducted by: HAI Date: April 2017 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details Testbed site PC

Software Configuration Details  Java 8

 Confluent Platform 2.01

 PostgreSQL 9.4

Test Name: Check Testbed health status

Preconditions  Requires middle tier to be accessible (System Monitoring Service)

 Initial Testbed Manager configuration:

o CPU usage WARNING > 50%, CRITICAL >90%

o Memory usage WARNING > 50%, CRITICAL >90%

o Disk usage WARNING > 50%, CRITICAL >90%

o Frequency of sending messages 30 sec

Related Requirements TB-MAN-003

Tools Used

Step Action Expected Result Status Remarks

1 Testbed Manager started 1. Testbed manager

successfully initialized

2. Testbed Manager

checks periodically

CPU load, memory and

disk usage

Success

2 Testbed manager processing (status

assessment)

3. A TestbedHealthStatus

message is created

containing an overall

assessment (OK,

WARNING,

CRITICAL) for the

usage metrics monitored

4. The message is sent to

the Message bus

Success

3 Check System monitoring Service

UI display at Middle Tier

Display of Testbed Manager

status. Initial status OK

Success

4 Artificially increase CPU or

Memory usage

Status message sent to the

message bus

Success i.e. by opening or running

additional resource

intensive applications in

the machine where

Testbed Manager is

installed

5 Recheck System monitoring

Service UI display at Middle Tier

Display of Testbed Manager

status. Status changes to

WARNING or CRITICAL

Success

6 Decrease CPU or Memory usage

and recheck System monitoring

Service UI display at Middle Tier

Display of Testbed Manager

status. Status changes back to

OK

Success Close extra running

applications

 D6.3: RAWFIE Operational Platform Testing and Integration Report

99

Table 94: Verification test of Check the status of all services running at testbed level

Test ID: TM04 Conducted by: HAI Date: April 2017 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details Testbed site PC

Software Configuration Details  Java 8

 Confluent Platform 2.01

 PostgreSQL 9.4

Test Name: Check the status of all services running at testbed level

Preconditions  Requires middle tier to be accessible (Experiment Controller Service)

 Requires Resource Controller and Network Manager running at Testbed

 Requires local PostgreSQL Server accessible

Related Requirements TB-MAN-003

TB-MAN-007

Tools Used

Step Action Expected Result Status Remarks

1 User starts Testbed Manager

application in testbed site

Testbed manager

successfully initialized

Successful connection to the

local (testbed site) database

server

Success

2 Testbed manager receives

periodical status messages from

Resource Controller, Network

Manager and Monitoring Manager

in the Message Bus

 Partial

success

Only Resource Controller

tested. Network Manager

is not implemented yet

and Monitoring Manager

is part of Testbed

Manager (not a separate

service)

3 User is able to see the availability

of the components that run at

testbed level by selecting the

appropriate action from the menu

Show current status of

components running at

testbed level

Success

100

2.6.3.6 UxV Node

Table 95: Verification test of UxV Return to base

Test ID: UxV01 Conducted by: Rob, UoA,

Certh
Date: 15/12/16 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration RobSim-SummitXL, Laser scan, IMU, camera)

Software Configuration RobSim-VirtualBox VM(ROS, Ubuntu 14.04,Gazebo)
Test Name: Return to base
Preconditions - Requires the RAWFIE system to be operational (e.g. Resource controller

reachable)

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related Requirements PT-EXA-T-008, PT-NAV-T-001, PT-NAV-T-002, PT-VIS-T-001, TB-REC-001,

TB-REC-004, UXV-NET-009, UXV-SEN-003, UXV-SEN-005, UXV-PRC-001,

UXV-MGT-002
Tools Used Network, Servers, Personal Computer, Skype

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established OK

2 Establish a secure control session

Secured control session

established
Partial Secured kafka bus to be

implemented. The

acquisition of commands

is protected with a keyed

message.

3 Send the return to base command

Return to base command

received
OK It is treated as a waypoint to

the origin

4 If the UxV is not autonomous, instruct it

with the necessary waypoint or guidance

information, possibly until the end of the

test

Further optional instructions

for returning home received,

Confirmation of the UxV at

home

OK Either with provided

waypoint for path planning or

just one waypoint

5 Close the secure control session. The UxV is home after a safe

return. Connection closed
- Secured kafka bus to be

implemented.

 D6.3: RAWFIE Operational Platform Testing and Integration Report

101

Test ID: UxV01 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Return to base
Preconditions - Requires the RAWFIE system to be operational (e.g. Resource controller reachable)

- Requires the mission to be defined and running.
- Requires the UxV to be ready to operating (e.g. en route).
- Requires the UxV to be reachable by any communication mean.

Related Requirements PT-EXA-T-008, PT-NAV-T-001, PT-NAV-T-002, PT-VIS-T-001, TB-REC-001,

TB-REC-004, UXV-NET-009, UXV-SEN-003, UXV-SEN-005, UXV-PRC-001,

UXV-MGT-002
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Establish a secure control session

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Send the return to base command

Return to base command

received
Success

4 If the UxV is not autonomous, instruct it

with the necessary waypoint or guidance

information, possibly until the end of the

test

Further optional instructions

for returning home received,

Confirmation of the UxV at

home

Success

5 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial

Success
See remark on step 2

Table 96: Verification test of the ability of the UxV to follow a route

Test ID: UxV02 Conducted by: Rob, UoA,

Certh
Date: 15/12/16 Test Category: Verification

Tests (testbed tier)
Hardware Configuration RobSim-SummitXL, Laser scan, IMU, camera)

Software Configuration RobSim-VirtualBox VM(ROS, Ubuntu 14.04,Gazebo)

Test Name: Follow a route
Preconditions - Requires the RAWFIE system to be operational (e.g. Resource controller

reachable)

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related Requirements PT-EXA-T-008, PT-NAV-T-001, PT-NAV-T-002, PT-VIS-T-001, TB-REC-001, TB-

REC-004, UXV-NET-009, UXV-SEN-003, UXV-SEN-005, UXV-PRC-001
Tools Used Network, Servers, Personal Computer, Skype

Step Action Expected Result Status Remarks
1 Resource controller computes mission and

send waypoint

Robot proceeds to the

specified point,
OK Care to choose reachable

waypoints

2 Robot continuously sends actual location RC receives position and check

if WP have been reached
OK

3 RC sends next point Robot receives and proceed to

next point
OK Reached target location with

desired location must be

checked carefully by RC

102

Test ID: UxV02 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Follow a route
Preconditions 1 Requires the RAWFIE system to be operational (e.g. Resource controller

reachable)
2 Requires the mission to be defined and running.
3 Requires the UxV to be ready to operating (e.g. en route).
4 Requires the UxV to be reachable by any communication mean.

Related Requirements PT-EXA-T-008, PT-NAV-T-001, PT-NAV-T-002, PT-VIS-T-001, TB-REC-001, TB-

REC-004, UXV-NET-009, UXV-SEN-003, UXV-SEN-005, UXV-PRC-001
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Step
1 Resource controller computes mission and

send waypoint
Robot proceeds to the

specified point,
Success

2 Robot continuously sends actual location RC receives position and check

if WP have been reached
Success

3 RC sends next point Robot receives and proceed to

next point
Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

103

Table 97: Verification test of Acquire sensor samples

Test ID: UxV03 Conducted by: Rob, UoA,

Certh
Date: 15/12/16 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration RobSim-SummitXL, Laser scan, IMU, camera)

Software Configuration RobSim-VirtualBox VM(ROS, Ubuntu 14.04,Gazebo)

Test Name: Acquire sensor samples
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related Requirements PT-NF-001, UXV-SEN-005, UXV-STO-001, UXV-STO-002, UXV-NET-006, UXV-

NET-007, TB-MAN-004, UXV-STO-001, UXV-STO-002, UXV-STO-003, UXV-STO-

004, UXV-SEN-001, UXV-SEN-002, UXV-SEN-003, UXV-SEN-005

Tools Used Network, Servers, Personal Computer, Skype

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established OK

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial Secured kafka bus to be

implemented. The

acquisition of commands

is protected with a keyed

message.
3 Send the acquisition commands Commands received and

executed
OK Set of commands to be

completed

4 Store sensor samples and, if possible,

transmit them via the data communication

system

Samples stored and, if possible,

transmitted
Partial Command start/stop

broadcast received.

Command for storage to be

implemented

5 If opened specifically for the matter of the

test, close the secure control session.
Sensor samples have acquired

correctly and are stored in the

UxV memory or in the

experiment database.

Connection closed

Partial Secured kafka bus to be

implemented. Connection

not closed. Listener stops

reading the bus.

104

Test ID: UxV03 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Acquire sensor samples
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.
- Requires the UxV to be ready to operating (e.g. en route).
- Requires the UxV to be reachable by any communication mean.

Related Requirements PT-NF-001, UXV-SEN-005, UXV-STO-001, UXV-STO-002, UXV-NET-006, UXV-

NET-007, TB-MAN-004, UXV-STO-001, UXV-STO-002, UXV-STO-003, UXV-STO-

004, UXV-SEN-001, UXV-SEN-002, UXV-SEN-003, UXV-SEN-005
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Send the acquisition commands Commands received and

executed
Success Output of sensors is

controlled via the

SensorPublishControl

message.
4 Store sensor samples and, if possible,

transmit them via the data

communication system

Samples stored and, if possible,

transmitted
Success

5 If opened specifically for the matter of

the test, close the secure control session.
Sensor samples have acquired

correctly and are stored in the

UxV memory or in the

experiment database.

Connection closed

Partial

Success
See remark on step 2

 D6.3: RAWFIE Operational Platform Testing and Integration Report

105

Table 98: Verification test of Fidelity to commands

Test ID: UxV04 Conducted by: Date: Test Category: Verification

Tests (Testbed tier)
Hardware Configuration
Software Configuration

Test Name: Fidelity to commands
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related Requirements UXV-NET-006, UXV-NET-007, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-

001, UXV-STO-002, UXV-STO-003, UXV-STO-004

Tools Used

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established

2 Establish a secure control session (if not

done already)

Secured control session

established

3 Send repeatedly pre-defined sets of

commands, covering the full range of

possible UxV actions,

Commands received and

executed

4 Check the conformance of the undertaken

actions and corrections (if necessary) to the

commands,

Undertaken actions in

conformance to the commands

5 Record all fine grained status of the UxV

over the duration of the test, to be able to

reconstruct the behavior of the UxV,

Status recorded

6 If opened specifically for the matter of the

test, close the secure control session.
Sensor samples have acquired

correctly and are stored in the

UxV memory or in the

experiment database.

Connection closed

106

Test ID: UxV04 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Fidelity to commands
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.
- Requires the UxV to be ready to operating (e.g. en route).
- Requires the UxV to be reachable by any communication mean.

Related Requirements UXV-NET-006, UXV-NET-007, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-

001, UXV-STO-002, UXV-STO-003, UXV-STO-004
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Send repeatedly pre-defined sets of

commands, covering the full range of

possible UxV actions,

Commands received and

executed
Success

4 Check the conformance of the

undertaken actions and corrections (if

necessary) to the commands,

Undertaken actions in

conformance to the commands
Success

5 Record all fine grained status of the UxV

over the duration of the test, to be able to

reconstruct the behavior of the UxV,

Status recorded Success

6 If opened specifically for the matter of

the test, close the secure control session.
Sensor samples have acquired

correctly and are stored in the

UxV memory or in the

experiment database.

Connection closed

Partial

Success
See remark on step 2

 D6.3: RAWFIE Operational Platform Testing and Integration Report

107

Table 99: Verification test of Continuous communication

Test ID: UxV05 Conducted by: Rob, UoA,

Certh
Date: 15/12/16 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration RobSim-SummitXL, Laser scan, IMU, camera)

Software Configuration RobSim-VirtualBox VM(ROS, Ubuntu 14.04,Gazebo)

Test Name: Continuous communication
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating.

- Requires the UxV to be reachable by any communication mean.
Related Requirements UXV-NET-006, UXV-NET-007, TB-MOM-003, UXV-STO-004

Tools Used Network, Servers, Personal Computer, Skype

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established OK

2 Exchange a predefined set of commands

and data.
Commands and data correctly

exchanged
OK Location, Attitude,

LaserScan tested

3 Close the communication session. Communication closed OK

108

Test ID: UxV05 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Continuous communication
Preconditions • Requires the RAWFIE system to be operational

• Requires the mission to be defined and running.
• Requires the UxV to be ready to operating.
• Requires the UxV to be reachable by any communication mean.

Related Requirements UXV-NET-006, UXV-NET-007, TB-MOM-003, UXV-STO-004

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Exchange a predefined set of commands

and data.
Commands and data correctly

exchanged
Success

3 Close the communication session. Communication closed Success

Table 100: Verification test of Continuous communication

Test ID: UxV06 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Continuous communication
Preconditions - Requires the RAWFIE system to be operational

- Requires the UxV to be ready to operating.
- Requires the UxV to be reachable by any communication mean.

Related Requirements UXV-NET-006, UXV-NET-007, PT-NF-001, TB-MOM-003, UXV-STO-004

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Check communication parameters

Communication parameters

and status are correct and

matching

Success

4 Exchange a pre-defined set of

commands and data,
Commands and data correctly

exchanged
Success

5 Close the communication session. Communication closed Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

109

Table 101: Verification test of Secure communication

Test ID: UxV07 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Secure communication
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.
- Requires the UxV to be ready to operating (e.g. en route).
- Requires the UxV to be reachable by any communication mean.

Related Requirements UXV-NET-006, UXV-NET-007, PT-NF-001, TB-MOM-003, UXV-STO-004

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Send safe commands and measure the

temporal characteristics of the

communication (e.g. response time,

synchronization of reception across a

swarm of UxV (coordinated group of

UxV), etc.).

Real-time constraints

applicable to the exchanged

commands are met or

mismatches are detected

Success The time of flight of

messages is greater when the

producer registers with the

message bus, sometimes

reaching more than 10

seconds. This latency is

perfectly tolerated by MST

vehicles
4 Close the secure control session. Connection closed Partial

Success
See remark on step 2

110

Table 102: Verification test of Real-time communication

Test ID: UxV08 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Real-time communication
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.
- Requires the UxV to be ready to operating.
- Requires the UxV to be reachable (at least sporadically) by any communication

mean.
Related Requirements UXV-NET-006, UXV-NET-007, TB-MOM-003, TB-MAN-004, UXV-STO-001, UXV-

STO-002, UXV-STO-003, UXV-STO-004
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Start a transaction. Transaction started Success

3 Interrupt the communication at the low-

level (e.g. disconnect the antenna)
Communication is interrupted,

the transaction is not

complete.

Success

4 Re-establish the communication low

level means
The transaction resumes and

completes
Success

5 Close the communication session. Connection closed Success

 D6.3: RAWFIE Operational Platform Testing and Integration Report

111

Table 103: Verification test of UxV Device Management

Test ID: UxV09 Conducted by: Rob Date: 20/04/2016 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Summit XL

Software Configuration ROS Indigo, Ubuntu 14.04

Test Name: UxV Device Management

Preconditions  Requires the RAWFIE system to be operational

 Requires the mission to be defined and running.

 Requires the UxV to be ready to operating (e.g. en route).

 Requires the UxV to be reachable by any communication mean.

Related Requirements UXV-NET-006, UXV-NET-007, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-

STO-001, UXV-STO-002,UXV-STO-003, UXV-STO-004

Tools Used Secured Remote Desktop Application

Step Action Expected Result Status Remarks

1 Establish the communication with the

UxV

Communication established OK Internal tool for

maintenance

2 Establish a secure control session (if

not done already)

Secured control session

established

OK

3 Send device management commands

Command received and

applied

- Full control of embedded

robot computer

4 Check and log the status of the device Device has responded to the

commands according to the

specification

OK

5 Close the secure control session. The UxV is home after a safe

return. Connection closed

OK

112

Test ID: UxV9 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: UxV Device Management
Preconditions  Requires the RAWFIE system to be operational

 Requires the mission to be defined and running.

 Requires the UxV to be ready to operating (e.g. en route).

 Requires the UxV to be reachable by any communication mean.
Related Requirements UXV-NET-006, UXV-NET-007, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-001,

UXV-STO-002,UXV-STO-003, UXV-STO-004
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Send device management commands

Command received and

applied
Success

4 Check and log the status of the device Device has responded to the

commands according to the

specification

Success

5 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial

Success
See remark on step 2

 D6.3: RAWFIE Operational Platform Testing and Integration Report

113

Table 104: Verification test of the UxV connection

Test ID: UxV10 Conducted by: Rob, UoA,

Certh

Date: 27/2/2016 Test Category: Verification

Tests (testbed tier)

Hardware Configuration Summit XL

Software Configuration Ros Indigo, Ubuntu 14.04

Test Name: UxV Connection Test

Preconditions UxV-Node launched, Message bus working

Related Requirement UXV-NET-006, UXV-NET-007, TB-MOM-003, UXV-STO-004

Tools Used Robot, Porto MST Facilities Network, PC

Step Action Expected Result Status Remarks

1 Kafka Subscriber is called from another machine Topic is shown with UxV

information being published

OK

2 Kafka Publisher is called with a valid waypoint Robot proceeds to the specified

point

OK

Test ID: UxV10 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (testbed tier)

Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1
Software Configuration OceanScan Proxy 2016.02
Test Name: UxV Connection Test

Preconditions UxV-Node launched, Message bus working

Related Requirement UXV-NET-006, UXV-NET-007, TB-MOM-003, UXV-STO-004
Tools Used OceanScan Proxy 2016.02 Testsuit

Step Action Expected Result Status Remarks

1 Kafka Subscriber is called from another machine Topic is shown with UxV

information being published
Success

2 Kafka Publisher is called with a valid waypoint Robot proceeds to the specified

point
Success

114

Table 105: Verification test of Sensor Data Acquisition 1

Test ID: UxV11 Conducted by: Rob, UoA,

Certh
Date: 27/2/2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration Summit XL

Software Configuration Ros Indigo, Ubuntu 14.04
Test Name: Sensor Data Acquisition 1
Preconditions - UxV is in operation state and the parent UxV node has been launched

- Network Communication is also fully functional
Related Requirements UXV-NET-006, UXV-NET-007, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-

001, UXV-STO-002,UXV-STO-003, UXV-STO-004

Tools Used Robot, Porto MST Facilities Network, PC

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established OK

2 Establish a secure control session (if not

done already)

Secured control session

established
- Not implemented yet

3 Acquire sensor data

Data acquired (every sensor

works as specified)
OK

4 Send acquired data Data received OK

5 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial Stop listening and publishing

Test ID: UxV11 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Sensor Data Acquisition 1
Preconditions - UxV is in operation state and the parent UxV node has been launched

- Network Communication is also fully functional
Related Requirements UXV-NET-006, UXV-NET-007, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-

001, UXV-STO-002,UXV-STO-003, UXV-STO-004
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Acquire sensor data

Data acquired (every sensor

works as specified)
Success Individual sensor data is

tested
4 Send acquired data Data received Success Provides data gathered by

each sensor placed on the

robot. Data streamed of every

sensor is tested individually
5 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial

Success
See remark on step 2

 D6.3: RAWFIE Operational Platform Testing and Integration Report

115

Table 106: Verification test of Sensor Data Acquisition 2

Test ID: UxV12 Conducted by: Rob, UoA,

Certh
Date: 27/2/2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration Summit XL

Software Configuration Ros Indigo, Ubuntu 14.04
Test Name: Sensor Data Acquisition 2
Preconditions - UxV is in operation state and the parent UxV node has been launched

- Network Communication is also fully functional
Related Requirements UXV-NET-006, UXV-NET-007, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-

001, UXV-STO-002,UXV-STO-003, UXV-STO-004

Tools Used Robot, Porto MST Facilities Network, PC

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established OK

2 Establish a secure control session (if not

done already)

Secured control session

established
- Not implemented yet

3 Instruct the robot to move to a known

location
Robot at the specific location OK

4 Acquire current location data

Location data acquired

(location sensor works as

specified)

OK

5 Send acquired location data Data received OK

6 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial Stop listening and publishing

116

Test ID: UxV12 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Sensor Data Acquisition 2
Preconditions - UxV is in operation state and the parent UxV node has been launched

- Network Communication is also fully functional
Related Requirements UXV-NET-006, UXV-NET-007, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-

001, UXV-STO-002,UXV-STO-003, UXV-STO-004
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Establish a secure control session (if

not done already)

Secured control session

established
Partial

Success
At this point only network level

security is used (i.e., WPA2)

3 Instruct the robot to move to a know

location
Robot at the specific location Success Robot is moved to a precisely

located point and a comparison

is done later
4 Acquire current location data

Location data acquired (location

sensor works as specified)
Success Localization of the robot is

tested.
5 Send acquired location data Data received Success Provides data about the

location of the robot. Location

is compared to known location.
6 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial

Success
See remark on step 2

 D6.3: RAWFIE Operational Platform Testing and Integration Report

117

Test ID: UxV13 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Data Storage
Preconditions - UxV is in operation state and the parent UxV node has been launched.

- Sensor node is functional
Related Requirements UXV-NET-006, UXV-NET-007, TB-MAN-004, UXV-STO-001, UXV-STO-002,UXV-

STO-003, UXV-STO-004, TB-MAN-004, UXV-STO-001, UXV-STO-002, UXV-STO-

003, UXV-STO-004
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 A request for storing certain data is done Command received and data is

stored locally
Partial

Success
At this point no such

command exists and the

UxVs will store all data
4 After a given mission, data storage in the

system is checked.

Data was correctly stored and

kept.
Success The data is stored and

identified in the robot system

5 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial

Success
See remark on step 2

118

Table 107: Verification test of Waypoints Processed

Test ID: UxV14 Conducted by: Rob, UoA,

Certh
Date: 15/12/16 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration RobSim-SummitXL, Laser scan, IMU, camera)

Software Configuration RobSim-VirtualBox VM(ROS, Ubuntu 14.04,Gazebo)

Test Name: Waypoints Processed
Preconditions - UxV is in operation state and the UxV parent node has been launched.

- Sensor node is functional, network communication is functional
Related Requirements UXV-NET-006, UXV-NET-007, TB-MAN-004, UXV-STO-001, UXV-STO-002,UXV-

STO-003, UXV-STO-004,

Tools Used Network, Servers, Personal Computer, Skype

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established OK

2 Establish a secure control session (if not

done already)

Secured control session

established
OK

3 Waypoints are sent to the UxV UxV receives and processes the

waypoints
OK

4 The calculated route is applied to the UxV

The actual trajectory matches

the route calculated by the

navigation.

OK

5 Iterate step 4 until assessment is complete UxV stops, informs and

recalculate its route to next

waypoint if an unexpected

obstacle is found.

OK Recalculation is done

internally by UxV node

6 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial Secured kafka bus to be

implemented. Connection

not closed. Listener stops

reading the bus.

 D6.3: RAWFIE Operational Platform Testing and Integration Report

119

Test ID: UxV14 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Waypoints Processed
Preconditions - UxV is in operation state and the UxV parent node has been launched.

- Sensor node is functional, network communication is functional
Related Requirements UXV-NET-006, UXV-NET-007, TB-MAN-004, UXV-STO-001, UXV-STO-002,UXV-

STO-003, UXV-STO-004,
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Waypoints are sent to the UxV UxV receives and processes the

waypoints
Success Semi-autonomous mission is

tested. The UxV has to

process a set of waypoints

and move to each waypoint

in sequence. The UxV

processes the data.
4 The calculated route is applied to the

UxV

The actual trajectory matches

the route calculated by the

navigation.

Success

5 Iterate step 4 until assessment is

complete
UxV stops, informs and

recalculate its route to next

waypoint if an unexpected

obstacle is found.

Not Tested The UxVs used in this test are

not equipped with obstacle

avoidance systems.

6 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial

Success
See remark on step 2

2.7 Benchmarking of different Message Bus topologies and configurations

2.7.1 Purpose

The message bus is a key element of the RAWFIE system, both from the point of view of the

features and of the performance. Benchmarking kafka on reference platforms will give valuable

and reliable indications for the dimensioning of the RAWFIE system so that, in similar

conditions, it can increase the chances for meeting the time constraints during most of the

experimentation execution.

2.7.2 Scenarios and setup

The detailed description of the test setup, kafka configuration and other hardware and software

parameters are given in section 3.2.4 of deliverable D4.7. The next paragraphs give the most

important aspects of the considered scenarios. Scenario A corresponds to a Single centralised

Apache Kafka Broker. The scenario B corresponds to Multiple Apache Kafka Brokers with the

120

same topics on each different Testbed. The scenario C corresponds to the Multiple Apache

Kafka Brokers with different topics per testbed.

For scenario A, a Kafka cluster with 4 nodes was created. All VMs were running in 2GB RAM.

Every VM was running a producer and a consumer. Jconsole was used for collecting metrics

and exporting them.

For scenario B and C a cluster of 5 computers with 3 Kafka nodes and 3 Zookeeper instances

were used. Acting as the simulated Testbed environments 2 Virtual Machines each in a

different network were connected to the internet with a regular ADSL connection. In scenarios

B and C, all the messages were sent in the VPN network as was established in all testbeds for

security reasons.

For Scenario A the metrics described in the following were collected. This is the complete

result set for 1000 records. All messages were sent to one topic from the same remote machine

(i.e., running on a different country than the Kafka server). The consumer and producer run on

separate threads. Each dispatched record contains a timestamp that can be used to measure the

round-trip time (RTT). Two scenarios were tested:

a) burst produce/consume: the producer dispatches a burst of 1000 records back to back

to the message bus and the elapsed time is recorded (TX). The consumer reads those

1000 records from the message as soon as they are available and the elapsed time is

recorded (RX). In this scenario we try to measure the latency characteristics of records

that are not used for automatic control of UxVs (i.e., payload sensor data, basic

telemetry) and therefore will not trigger any reply.

b) synchronous produce/consume: the producer dispatches one record to the message bus

and the elapsed time is recorded (TX) it then waits for the consumer to read the record

from the message bus and this elapsed time is recorded (RX). In this scenario we try to

measure the latency characteristics of records that may trigger a reply (i.e. waypoint

references).

2.7.3 Results

Table 108 summarises the execution performance of kafka in the two metrics in the scenario

A. The test runs over more than 100s and 20s respectively.

Table 108: Sync and Burst cased tested in scenario A

 Sync Test (TX/RX) | 1000

records

Burst Test (TX/RX) | 1000

records

Subscribed Topics 1 1

Elapsed Time 113226 ms 21662 ms

Schema Initialization 8 ms

11 ms

Kafka Producer

Initialization

3 ms

3 ms

 D6.3: RAWFIE Operational Platform Testing and Integration Report

121

Kafka Consumer

Initialization

5266 ms

5075 ms

Kafka Consumer

Shutdown

0 ms 611 ms

Figure 7 – Round Trip Time metrics in scenario A

Note: Y axis is duration in millisecond.

In the burst test, which results are displayed in Figure 7, the producer does not wait for the

consumer to complete. The Round Trip Time is measured using the timestamp in the

transmitted/received record. The interpretation of the observed phenomenon is that the first

dispatched messages takes longer to return to the consumer than the next dispatched messages.

This is usually due to on-demand resource allocation, routing, queue establishment,

handshaking, etc. to which kafka may be also sensitive.

102
951

113.1 38.12223

20976

10634.81

6020.21

0

5000

10000

15000

20000

25000

 RTT - Minimum RTT - Maximum RTT - Mean RTT - SD

Sync (ms)

Burst (ms)

122

Figure 8: TX metrics in Scenario A

Note: Y axis is always duration in millisecond.

The TX duration on Figure 8 is the time it takes to pass the message to the Kafka infrastructure.

Only the producer side is accounted for.

For scenarios B and C, Kafka metrics from the TotalTimeMs family were collected. Each

virtual machine was running 1 Kafka broker and in the case of the third scenario 1 Zookeeper

instance. In each scenario, we had 2 producers sending 50 messages per second and 10

consumers running locally in every VM, emulating the traffic in a Testbed environment where

UxV devices performing the produce and consume operations pointed to their local broker.

For the third scenario we also had the Apache Kafka Mirror Maker tool performing the

mirroring from the virtual machine’s broker to the cluster located in the UoA premises .

TotalTimeMs is the total time taken to service a request (be it a produce, fetch-consumer, or

fetch-follower request) from Jconsole. The TotalTimeMs measurement itself is the sum of four

metrics:

o queue: time spent waiting in the request queue

o local: time spent being processed by leader

o remote: time spent waiting for follower response (only when

requests.required.acks=-1)

o response: time to send the response

TotalTimeMs family of metrics provide measurements for different requests in a Kafka cluster.

These are:

o produce: requests from producers to send data

o fetch-consumer: requests from consumers to get new data

o fetch-follower: requests from brokers that are the followers of a partition to get new

data

0 0

641

0.69 20.27

686

0

642

0.68 20.3

0

100

200

300

400

500

600

700

800

TX Duration TX - Minimum TX- Maximum TX - Mean TX - SD

Sync (ms)

Burst (ms)

 D6.3: RAWFIE Operational Platform Testing and Integration Report

123

We used the produce and fetch-consumer measurements in each scenario and the results are

shown bellow

Figure 9: Mean Time for consuming messages in Scenarios B and C

Figure 10: Mean Time for leader broker to serve messages in Scenarios B and C

Figure 7 shows the results of the consumer measurements from the time that a consumer sends

a request to consume from a partition in the Kafka broker until it’s request is serviced

420

430

440

450

460

470

480

490

500

510

1

4
4

8
7

1
3

0

1
7

3

2
1

6

2
5

9

3
0

2

3
4

5

3
8

8

4
3

1

4
7

4

5
1

7

5
6

0

6
0

3

6
4

6

6
8

9

7
3

2

7
7

5

8
1

8

Mean time for consume in ms

MeanB

MeanC

0

2

4

6

8

10

12

14

16

18

1
4

9
9

7
1

4
5

1
9

3
2

4
1

2
8

9
3

3
7

3
8

5
4

3
3

4
8

1
5

2
9

5
7

7
6

2
5

6
7

3
7

2
1

7
6

9
8

1
7

8
6

5
9

1
3

9
6

1

Mean time for leader broker to serve
a producer message

MeanB

MeanC

124

Figure 8 shows the results of the producer measurements from the time a producer sends a

produce request to the time the leader broker in the UoA Kafka cluster send a response that the

produce request was completed.

From the figures above we can notice that the time for serving a produced message is lower in

scenario C than in the related values in scenarios A and B. This was expected because the

broker in its testbed is assigned to handle a bunch of messages produced and consumed by a

small number of the devices. The small amount of partitions enhances the handling of the

messages between the entities.

2.8 Deviations with respect to D6.1

In this deliverable we follow an approach based on the enrichment of the previous experience

and documentation, in order to focus on the new or extended integration and verification

results, as derived from the first iteration. The second development cycle included integration

and verification actions for the new components developed by partners or by the third parties

of ROC1.

The Integration and Testing section was enriched with the descriptions of the infrastructure and

the tools used by the partners for implementing the methodology described in the relevant

section of D6.1. Integration and verification test results have been grouped to this version to

the tree tiers described in the RAWFIE architecture, i.e. front-end, middle and testbed tier. In

addition we present the results of verification and integration by using the same template tables

proposed in D6.3.

 D6.3: RAWFIE Operational Platform Testing and Integration Report

125

Part III: Conclusion & Roadmap

The RAWFIE integration process is still under consolidation. Numerous technical options and

tools have been experimented, stabilised and validated (the kafka configurations, the coordinate

system) and others are still being considered as potential candidates or under evaluation

(proximity component, network controller, etc.). The currently integrated RAWFIE platform

can be deployed in selected sites under the guidance of the RAFIE consortium, with a number

of non-blocking restrictions (e.g. only one network connection defined at startup, etc.). This

second platform is used for getting the feedback of the professional users involved in Open

calls. This includes UxV and Testbed owners.

The components have been tested individually as well as once integrated. The consortium has

tested and evaluated the performance of the underlying infrastructure, in particular the

message, to make sure that it meets the requirements of typical installations.

The next period will focus on the validation of the missing components or components that

have not been yet fully tested to have a fully validated reference RAWFIE platform that can be

easily and safely deployed at large. This platform will be made widely available for extended

use, for covering the maximum of use cases for validating all features and characteristics of

RAWFIE. In parallel, the integration of external entities and the customization of the RAWFIE

will be supported. Later, the RAWFIE consortium may address the continuous feedback given

by the RAWFIE stakeholders (experimenters, resource providers, third parties, regulatory

bodies, etc.) to support a semi-automatic notification and improvement process.

126

Part IV: Annex

Annex A Glossary

The RAWFIE glossary consists of generic terms, contributed by all partners, used across the

entire RAWFIE project.

A

Accounting Service

RAWFIE component. Component that keeps track of resources usage by individual users.

Aggregate Manager

Slice Federation Architecture (SFA) term. The Aggregate Manager API is the interface by

which experimenters discover, reserve and control resources at resource providers.

Avro

Apache Avro: a remote procedure call and data serialization framework

B

Booking Service

RAWFIE component. The Booking Service manages bookings of resources by registering

data to appropriate database tables.

Booking Tool

RAWFIE component. The Booking tool will provide the appropriate Web UI interface for

the experimenter to discover available resources and reserve them for a specified period.

C

Common Testbed Interface

RAWFIE component. The set of software and hardware functionalities each Testbed

provider should ensure, for the communication with Middle Tier software components of

RAWFIE, therefore for the integration with the RAWFIE platform

Component

A reusable entity that provides a set of functionalities (or data) semantically related. A

component may encapsulate one or more modules (see definition) and should provide a well

defined API for interaction

 D6.3: RAWFIE Operational Platform Testing and Integration Report

127

D

Data Analysis Engine

RAWFIE component. The Data Analysis Engine enables the execution of data processing

jobs by sending requests to a processing engine which will perform the computations

specified when the analytical task was defined through the Data Analysis Tool to be

transmitted to the processing engine for execution.

Data Analysis Tool

RAWFIE component. The Data Analysis Tool enables the user to browse available data

sources for subject to analytical treatment as well as previous analysis tasks' outcomes.

E

EDL Compiler & Validator

RAWFIE component. The EDL validator will be responsible for performing syntactic and

semantic analysis on the provided EDL scripts.

Experiment Authoring Tool

RAWFIE component. This component is actually a collection of tools for defining

experiments and authoring EDL scripts through RAWFIE web portal. It will provide

features to handle resource requirements/configuration, location/topology information, task

description etc.

Experiment Controller

RAWFIE component. The Experiment Controller is a service placed in the Middle tier and

is responsible to monitor the smooth execution of each experiment. The main task of the

experiment controller is the monitoring of the experiment execution while acting as ‘broker’

between the experimenter and the resources.

Experiment Monitoring Tool

RAWFIE component. Shows the status of experiments and of the resources used by

experiments.

Experiment Validation Service

RAWFIE component. The Experiment Validation Service will be responsible to validate

every experiment as far as execution issues concern.

M

Master Data Repository

RAWFIE component. Repository that stores all main entities that are needed in the

RAWFIE platforms. Is an SQL-database

128

Measurements Repository

RAWFIE component. Stores the raw measurements from the experiments

Message Bus

Also known as Message Oriented Middleware. A message bus is supports sending and

receiving messages between distributed systems. It is used in RAWFIE across all tiers to

enable asynchronous, event-based messaging between heterogeneous components.

Implements the Publish/Subscribe paradigm.

Module

A set of code packages within one software product that provides a special functionality

Monitoring Manager

RAWFIE component. Monitors the status of the testbed and the UxVs belonging to it, at

functional level, e.g. the ‘health of the devices’ and current activity.

N

Network Controller

Manages the network connections and the switching between different technologies in the

testbed in order to offer seamless connectivity in the operations of the system.

L

Launching Service

RAWFIE component. The Launching Service is responsible for handling requests for

starting or cancellation of experiments.

R

Resource Controller

RAWFIE component. The Resource Controller can be considered as a cloud robot and

automation system and ensures the safe and accurate guidance of the UxVs.

Resource Explorer Tool

RAWFIE component. The experimenter can discover and select available testbeds as well

as resources/UxVs inside a testbed with this tool. Administrators can manage the data.

Results Repository

RAWFIE component. Stores the results of data analyses.

Resource Specification (RSpec)

 D6.3: RAWFIE Operational Platform Testing and Integration Report

129

SFA term. This is the means that the SFA uses for describing resources, resource requests,

and reservations (declaring which resources a user wants on each Aggregate).

S

Schema Registry

A schema registry is a central service where data schemas are uploaded to. As an added

benefit each schema has versions with it can convert allowable formats to other ones (e.g.:

float to double) It maintains schemas for the data transferred and keeps revisions to be able

to upgrade the definitions as with the simple field conversion. Used in RAWFIE for

messages on the message bus.

Service

A component that is running in the system, providing specific functionalities and accessible

via a well known interface.

Slice Federation Architecture (SFA)

SFA is the de facto standard for testbed federation and is a secure, distributed and scalable

narrow waist of functionality for federating heterogeneous testbeds.

Subsystem

A collection of components providing a subset of the system functionalities.

System

A collection of subsystems and/or individual components representing the provided

software solution as a whole.

System Monitoring Service

RAWFIE component. Checks readiness of main components and ensure that all critical

software modules will perform at optimum levels. Predefined notification are triggered

whenever the corresponding conditions are met, or whenever thresholds are reached

System Monitoring Tool

RAWFIE component. Shows the status and the readiness of the various RAWFIE services

and testbed

T

Testbed

A testbed is a platform for conducting rigorous, transparent, and replicable testing of

scientific theories, computational tools, and new technologies.

In the context of RAWFIE, a testbed or testbed facility is a physical building or area where

UxVs can move around to execute some experiments. In addition, the UxVs are stored in or

near the testbed.

130

Testbeds Directory Service

RAWFIE component. Represents a registry service of the middleware tier where all the

integrated testbeds and resources accessible from the federated facilities are listed,

belonging to the RAWFIE federation.

Testbed Manager

RAWFIE component. Contains accumulated information about the UxVs resources and the

experiments of each one of the federation testbeds.

Tool

A GUI implementation to do a special thing, e.g. the “Resource Explorer tool” to search for

a resource

U

Users & Rights Repository

RAWFIE component. Management of users and their roles. Is a directory services (LDAP).

Users & Rights Service

RAWFIE component. Manages all the users, roles and rights in the system.

UxV

The generic term for unmanned vehicle. In RAWFIE, it can be either:

USV - Unmanned Surface vehicle.

UAV - Unmanned Aerial vehicle.

UGV - Unmanned Ground vehicle.

UUV - Unmanned Underwater vehicle.

UxV Navigation Tool

RAWFIE component. This component will provide to the user the ability to (near) real-time

remotely navigate a squad of UxVs.

UxV node

RAWFIE component. A single UxV node. The UxV is a complete mobile system that

interacts with the other Testbed entities. It can be remotely controlled or able to act and

move autonomously.

V

Visualisation Engine

RAWFIE component. Used for providing the necessary information to the Visualisation

tool, to communicate with the other components, to handle geospatial data, to retrieve data

 D6.3: RAWFIE Operational Platform Testing and Integration Report

131

for experiments from the database, to load and store user settings and to forward them to the

visualisation tool.

Visualisation Tool

RAWFIE component. Visualisation of an ongoing experiment as well as visualisation of

experiments that are already finished

W

Web Portal

RAWFIE component. The central user interface that provides access to most of the

RAWFIE tools/services and available documentation.

Wiki Tool

RAWFIE component. Provides documentation and tutorials to the users of the platform.

132

Annex B Requirements

The requirements listed in Table 109: Requirements considered for the integration are

considered in the context of the integration.

Table 109: Requirements considered for the integration

PT-WEB-P-001 A web portal interface shall be provided to the users of the platform

to access almost all main functionalities.

PT-BOO-T-003 Booking Tool should delegate all its actions related to Booking of a

resource to the Booking Service

PT-BOO-T-004 Booking Tool may also interact with the Testbeds Directory Service

in order to retrieve information on unallocated testbed resources

PT-REE-T-004 Link to the Booking Tool should be provided

PT-EXM-T-003 Cancellation of running experiments should be possible via Web

Portal

PT-VIS-T-002 A 3D visualization should be available for the tracking of all moving

resources

PT-VIS-T-004 The Visualisation Tool shall provide access to information / features

associated to each UxV device on the geographic map

PT-DAA-T-001 Analysis tool will provide interface to data engine.

PT-DAA-T-002 Analysis tool will provide ability to query available data schemas

PT-DAA-T-003 Analysis tool will be able to read results from Results Database

PT-DAA-E-001 Analysis Engine will be able to query message bus streams

PT-DAA-E-001 Analysis Engine will be able to receive messages from Analysis Tool

PT-DAA-E-002 Analysis Engine will be able to write data to the Results Database

PT-DIR-S-007 The Testbed Directory Service shall provide the possibility to

register new resources belonging to a specific testbed in the

RAWFIE platform, as well as to unregister (delete) resources

PT-CPV-001 A tool for translating EDL into user directives shall be provided

PT-CPV-002 An experimenter should have the opportunity to use a code

generation engine

PT-CPV-003 Experiments defined via EDL shall be validated after their authoring

PT-CPV-004 The compiler and validator should communicate with the authoring

tool in order to transfer error indications and hints for solving them

PT-BOO-S-006 Booking Service should be able to compute and return feedback on

conflicting bookings for a provided booking request

PT-LAU-S-001 Launching Service should support short-term or manual launching

of an experiment initiated directly by an experimenter

PT-VIS-E-001 The Visualization Engine shall handle the communication with the

Message Bus, for the information that will be coming from the UxVs

PT-EXP-C-002 RAWFIE platform shall allow experimenters to remotely navigate

UxVs.

PT-EXP-C-006 The Experiment Controller shall support receiving feedback at

regular intervals from all testbed facilities about the progress of the

experiment in this time interval

 D6.3: RAWFIE Operational Platform Testing and Integration Report

133

PT-EXP-C-008 The Experiment Controller shall be able to continuously feed the

front-end tier (Experiment Monitoring Tool) giving the experimenter

a clear view of the experiment workflow as a whole

PT-EXA-T-001 Experiment Description Language (EDL) shall be used as a language

for the definition of experiment scenarios

PT-EXA-T-002 The EDL shall allow the definition of all necessary requirements for

an experiment

PT-EXA-T-003 For each defined experiment specific metadata, i.e. name, version,

date and description shall be defined.

PT-EXA-T-004 An experimenter shall be able to provide initial conditions and/or

configuration parameters for an experiment

PT-EXA-T-005 An experimenter shall be able to manage/guide the available booked

resources during experiment authoring

PT-EXA-T-008 An experimenter shall be able to provide navigation or movement

directives during experiment authoring

PT-EXA-T-009 An experimenter should be able to create groups of UxVs resources,

for which specific directives will apply.

PT-EXA-T-010 A textual editor shall be provided for the authoring of RAWFIE

experiments

PT-EXA-T-011 A visual/graphical editor shall be provided for the authoring of

RAWFIE experiments

PT-EXA-T-012 Platform shall allow saving, editing and/or deletion of an experiment

defined via EDL

PT-EXA-T-013 The visual editor should allow the definition of movement and

location waypoints from a map

PT-EXA-T-015 Validation of EDL script should be possible prior to or during saving

PT-EXV-S-001 RAWFIE shall provide a validator to constantly check experiment

scenarios during runtime

PT-EXV-S-002 The validation service should perform syntactic checking

PT-EXV-S-003 The validation service should perform semantic checking

TB-MOM-004 Testbed monitoring manager should be able to transmit the current

status to the System Monitoring Service.

TB-REC-003 The Resource Controller shall receive location messages from the

vehicles at regular intervals

TB-REC-005 For the experiment accomplishment the Resource Controller shall

operate in close coordination with the Experiment Controller

TB-MAN-005 Testbed Manager shall be periodically informed about the status of

all running experiments in the testbed

UXV-NET-006 UxV communication interoperability with RAWFIE (incoming)

UXV-NET-007 UxV communication interoperability with RAWFIE (outgoing)

UXV-SEN-005 UxVs should sent a notification to the Resource Controller when

they reach the desired location

134

References

[1] Xtext: https://eclipse.org/Xtext/index.html

[3] OpenLayers: http://openlayers.org/

https://eclipse.org/Xtext/index.html
http://openlayers.org/

