
This project has received funding from “HORIZON 2020” the European Union’s Framework Programme

 for research, technological development and demonstration under grant agreement no 645220

Project Coordinator: National and Kapodistrian University of Athens

H2020 - 645220

Road-, Air- and Water-based Future Internet

Experimentation

Project Acronym: RAWFIE

Contract Number:

645220

Starting date: Jan 1st 2015 Ending date: Dec 31st 2018

Deliverable Number
and Title

D4.1 - High Level Design and Specification of RAWFIE Architecture

Confidentiality PU Deliverable type
1
 R

Deliverable File D4.1 Date 31.05.2015

Approval Status
2
 2nd Reviewer Version 1.0

Contact Person Marcel Heckel Organization Fraunhofer

Phone +49 351 / 4640-645 E-Mail marcel.heckel@ivi.fraunhofer.de

1
 Deliverable type: P(Prototype), R (Report), O (Other)

2
 Approval Status: WP leader, 1

st
 Reviewer, 2

nd
 Reviewer, Advisory Board

 D4.1 - High Level Design and Specification of RAWFIE Architecture

2

AUTHORS TABLE

Name Company E-Mail

Marcel Heckel Fraunhofer marcel.heckel@ivi.fraunhofer.de

Blerina Lika UOA b.lika@di.uoa.gr

Kostas Kolomvatsos UOA kostasks@di.uoa.gr

Kakia Panagidi UOA kakiap@di.uoa.gr

Stathes Hadjiefthymiades UOA shadj@di.uoa.gr

Giovanni Tusa IES g.tusa@i4es.it

Kiriakos Georgouleas HAI GEORGOULEAS.Kiriakos@haicorp.com

Nikolaos Priggouris HAI PRIGGOURIS.Nikolaos@haicorp.com

Jason Ramapuram HES-SO jason@ramapuram.net

Lionel Blondé HES-SO lionel.blonde@hesge.ch

Cveta Dimitrova Epsilon cveta.dimitrova@epsilon-bulgaria.com

Ricardo Martins MST rasm@oceanscan-mst.com

Alexandre Sousa MST alex@oceanscan-mst.com

Elias Kosmatopoulos CERTH kosmatop@iti.gr

Philippe Dallemagne CSEM pda@csem.ch

REVIEWERS TABLE

Name Company E-Mail

Sarantis Paskalis UOA paskalis@di.uoa.gr

Philippe Dallemagne CSEM pda@csem.ch

Kiriakos Georgouleas HAI GEORGOULEAS.Kiriakos@haicorp.com

Nikolaos Priggouris HAI PRIGGOURIS.Nikolaos@haicorp.com

 D4.1 - High Level Design and Specification of RAWFIE Architecture

3

DISTRIBUTION

Name / Role Company Level of

confidentiality
3

Type of deliverable

ALL PU R

CHANGE HISTORY

Version Date Reason for Change Pages/Sections

Affected

0.1 2015-03-10 Initial version all

0.2 2015-04-17 Restructured and components tables added all

0.3 2015-04-20 “Relevant FIRE projects” added Section 2.1

0.4 2015-04-21 Component and Use cased responsibilities edited Sections 4 and 5

0.5 2015-04-23 Components refined Section 4

0.6 2015-04-23 Addition to state of the art Section 2

0.7 2015-04-04 Addition to state of the art Section 2

0.8 2015-04-05 Addition to state of the art Section 2

0.9 2015-04-06 Addition to state of the art, architectural overview

and components

Sections 2, 3, 4

0.10 2015-04-07 Addition to state of the art Section 2

0.12 2015-04-08 Review of contributions all

0.13 2015-04-11 Restructuring of document. Moved section 2 at the

end.

all

0.14 2015-04-18..25 Several contributions and restructuring all

0.15 2015-04-26 Finalize version for 1
st
 review all

0.16 2015-04-28 Review by HAI all

0.17 2015-04-28 Review by CSEM all

0.18 2015-04-29..31 Addressing Review comments all

1.0 2015-04-31 Final Version

3
 Deliverable Distribution: PU (Public, can be distributed to everyone), CO (Confidential, for use by consortium

members only), RE (Restricted, available to a group specified by the Project Advisory Board).

 D4.1 - High Level Design and Specification of RAWFIE Architecture

4

Abstract:

This deliverable describes the first version of the RAWFIE high lever architecture. An overview of

all components and there interaction is given. Also a state of the art summary of technologies

that may be used to implement the architecture is given.

Keywords:
architecture, components, interactions, technology overview

 D4.1 - High Level Design and Specification of RAWFIE Architecture

5

Part II: Table of Contents-

Part II: Table of Contents- .. 5

List of Figures ... 7

List of Tables ... 9

Part III: Executive Summary .. 11

Part IV: Main Section ... 12

1 Introduction ... 12

1.1 Scope of D4.1 ... 12

1.2 Relation to other deliverables ... 12

1.3 Abbreviations ... 12

1.4 Disambiguation .. 13

2 Architectural Overview ... 13

3 Components overview ... 15

3.1 Front end tier .. 16

3.2 Middle Tier ... 20

3.3 Data tier .. 29

3.4 Testbed tier ... 31

3.5 Requirement mapping .. 39

4 Potential use cases and sequence diagrams ... 42

4.1 User login, authentication and authorisation .. 42

4.1.1 Password-based user login .. 42

4.1.2 X.509 Certificate-based user login ... 44

4.1.3 Check user authorisation ... 44

4.1.4 Trusted and secure communication between the components 45

4.2 EDL editing .. 47

4.3 Resource booking and reservation ... 49

4.3.1 Search for a resource ... 49

4.3.2 Book a resource... 50

4.4 Experiment launching and execution ... 51

4.4.1 Short-term launching .. 51

 D4.1 - High Level Design and Specification of RAWFIE Architecture

6

4.4.2 Long term launching ... 53

4.5 Measurements recording .. 54

4.6 Data analysis .. 55

4.7 View visualization of running experiment ... 56

4.8 System monitoring ... 58

4.8.1 General monitoring activities .. 58

4.8.2 Error notifications ... 60

4.9 Testbed monitoring .. 61

4.10 UxV remote control .. 62

5 State of the art .. 65

5.1 Relevant FIRE projects .. 65

5.1.1 Fed4FIRE .. 65

5.1.2 SUNRISE .. 70

5.1.3 RELYonIT .. 73

5.1.4 IoT Lab.. 76

5.1.5 WISEBED ... 78

5.2 Relevant technologies .. 81

5.2.1 Experiment Description Language ... 81

5.2.2 Authentication mechanism.. 86

5.2.3 Data analysis ... 89

5.2.4 Navigation mechanism for UxVs.. 92

5.2.5 Device communication for UxVs ... 94

5.2.6 Cloud specifics .. 99

5.2.7 Data Pipeline Architecture: ... 102

5.2.8 Data storage .. 103

5.2.9 Message Bus technologies and related communication protocols 105

5.2.10 Resource discovery ... 111

5.3 UxV technologies ... 114

5.3.1 ROS platform control architecture .. 114

5.3.2 USV platform .. 117

References ... 122

 D4.1 - High Level Design and Specification of RAWFIE Architecture

7

List of Figures

Figure 1 - Architecture diagram .. 14

Figure 2 - Sequence Diagram – Password based user login ... 43

Figure 3 - Sequence Diagram - Certificate-based user login .. 44

Figure 4 - Sequence Diagram - Check user authorisation .. 45

Figure 5 - Sequence Diagram - communication between components ... 47

Figure 6 - Sequence Diagram - EDL editing .. 48

Figure 7 - Sequence Diagram - Search for resource, select one and start booking 50

Figure 8 - Sequence Diagram - Book a resource .. 51

Figure 9 - Sequence Diagram - Real time launching .. 53

Figure 10 - Sequence Diagram - Long term launching... 54

Figure 11 - Sequence Diagram – Measurements recording .. 55

Figure 12 - Sequence Diagram – Data analysis engine .. 56

Figure 13 - Sequence Diagram – Running experiment visualisation ... 57

Figure 14 - Sequence Diagram – System monitoring service – General activities 59

Figure 15 - Sequence Diagram – System monitoring service – Error notification 61

Figure 16 - Sequence Diagram – Testbed monitoring .. 62

Figure 17 - Sequence Diagram – UxV remote control ... 63

Figure 18 - FIRE pentagon ... 65

Figure 19 - OMF framework... 68

Figure 20: Logic view of the SUNRISE architecture ... 72

Figure 21: SUNRISE Gate in its essense .. 73

Figure 22: - Design diagram of RELYonIT tool-chain .. 75

Figure 23: Experiment described in OEDL language ... 81

Figure 24: – Federation of resource providers .. 83

Figure 25: Plugins enable access to testbeds .. 84

Figure 26 - Topologies of Spark Streaming + MLlib and Storm + Samoa 91

Figure 27 - Pros and Cons of Cloud computing ... 100

Figure 28: - Difference between IaaS, PaaS and SaaS. [24] ... 101

Figure 29 - Data pipeline architecture .. 102

Figure 30 - Communication between devices and schema registry .. 103

Figure 31 - Performance comparison of different databases .. 104

Figure 32 - Publish/Subscribe communication pattern through the use of a Message Broker ... 105

Figure 33 - Apache Kafka multi-broker architecture .. 107

Figure 34 - Comparison of throughput for different message brokers [82] 107

Figure 35 - Confluent architecture .. 108

Figure 36 - MQTT-SN clients state transition diagram [61] .. 111

Figure 37 - Advertisement of available resources and request for resources reservation in GENI

... 112

Figure 38 - Service Location protocol components .. 114

 D4.1 - High Level Design and Specification of RAWFIE Architecture

8

Figure 39 - Dune Tasks for communication between modules .. 118

Figure 40: Neptus mission planner interface .. 120

Figure 41 – MRA visualizations ... 120

 D4.1 - High Level Design and Specification of RAWFIE Architecture

9

List of Tables

Table 1: Common abbreviations ... 13

Table 2: Template for components’ description ... 16

Table 3: Web Portal .. 16

Table 4: Resource Explorer Too ... 17

Table 5: Booking Tool .. 17

Table 6: Experiment Authoring Too ... 18

Table 7: Experiment Monitoring Tool .. 18

Table 8: System Monitoring Tool ... 18

Table 9: UxV Navigation Tool ... 19

Table 10: Visualization Tool .. 20

Table 11: Data Analysis Tool ... 20

Table 12: EDL Compiler & Validator .. 21

Table 13: Experiment Validation Service ... 23

Table 14: Users & Rights Service ... 23

Table 15: Booking Service.. 23

Table 16: Launching Service .. 24

Table 17: Experiment Controller .. 25

Table 18: Data Analysis Engine ... 26

Table 19: System Monitoring Service .. 26

Table 20: Testbeds Directory Service ... 27

Table 21: Message Bus ... 29

Table 22: Testbeds & Resources Repository .. 29

Table 23: Experiments & EDL Repository ... 30

Table 24: Bookings Repository .. 30

Table 25: Measurements, Results & Status Repository .. 31

Table 26: Users & Rights Repository ... 31

Table 27: Testbed Proxy ... 32

Table 28: Testbed Manager .. 32

Table 29: Monitoring Manager ... 33

Table 30: Network Controller ... 33

Table 31: Resource Controller .. 34

Table 32: Navigation Service.. 35

Table 33: UxV node .. 36

Table 34: UxV - Network communication ... 36

Table 35: UxV – Sensors & Localization ... 37

Table 36: UxV – On board storage ... 37

Table 37: UxV – On board processing ... 38

Table 38: UxV – Device management .. 38

Table 39: Allocation of Platform Requirements to Architecture Components............................. 40

 D4.1 - High Level Design and Specification of RAWFIE Architecture

10

Table 40: Comparison of features providedfeature by Spark Streaming/MLlib and

Storm/Samoafeature .. 91

Table 41: Supported Algorithms in MLlib and Samoa:.. 92

Table 42: Comparison between Relation and NoSQL databases [84] .. 105

 D4.1 - High Level Design and Specification of RAWFIE Architecture

11

Part III: Executive Summary

This deliverable describes the planed high level architecture of RAWFIE. First a general

overview of the architecture is given. Following each planned component is described and

relation to other components are noted. After this, several use cases of the RAWFIE system are

investigated and sequence diagrams visualize how these use cases will be handled using the

planned architecture. At the end of the document, an excessive state of the art summary is given

that list technologies that may be used to implement the planned architecture.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

12

Part IV: Main Section

1 Introduction

1.1 Scope of D4.1

The DoW contains already a comprehensive overview of the planned high-level architecture.

This deliverable will go more into the technical details:

 Clearly outline all the planned components

 Define the capabilities of the component interfaces

 Show possible interactions and dependencies between different components

 Describe the runtime environment of the components (cloud, local server, etc.)

In addition, this deliverable includes an analysis of existing technological solutions in areas

related to RAWFIE.

1.2 Relation to other deliverables

A detailed requirement analysis was given in D3.1. Based on these requirements and the planned

functionalities from the DoW, this architecture document was created. The stakeholders used in

the diagrams are described in detail within D3.1.

D4.2 is expected to provide detailed components descriptions. Therefore, the intention of this

deliverable is just to describe the components and their interfaces on a high level.

1.3 Abbreviations

Abbreviation Meaning

3D three-dimensional space

API Application programming interface

AT Aerial Testbed

AUV Autonomous Underwater Vehicle

CA Certification Authority

DoW Description of Work

EDL Experiment Description Language

EER Experiments and EDL Repository

EVS Experiment Validation Service

GUI graphical user interface

IDE integrated development environment

KPI Key Performance Indicator

MM Monitoring Manager

MT Maritime Testbed

NAT Network Address Translation

OMF Orbit Management Framework

OML ORBIT Measurement Library

 D4.1 - High Level Design and Specification of RAWFIE Architecture

13

RC Resource Controller

REST Representational state transfer

SAML Security Assertion Markup Language

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSO Single-Sign-On

TM Testbed Manager

UAV Unmanned Arial Vehicle

UGV Unmanned Ground Vehicle

USV Unmanned Surface Vehicle

UxV Unmanned aerial/ground/surface Vehicle

VT Vehicular Testbed

WSDL Web Services Description Language

XMPP Extensible Messaging and Presence Protocol
Table 1: Common abbreviations

1.4 Disambiguation

 Module:

o Modules deal with code packaging and the dependencies among code.

o A set of code packages within one software product that provides a special

functionality

 Component:

o A reusable entity that provides a set of functionalities (or data) semantically

related. A component may encapsulate one or more modules or packages and

should provide a well defined API for interaction

 Subsystem

o A collection of components providing a subset of the system functionalities.

 System

o A collection of subsystems and/or individual components representing the system

as a whole.

 Tool

o A GUI implementation to do a special thing, e.g. the “Resource Explorer tool” to

search for a resource.

o Can be a module or component

2 Architectural Overview

This chapter gives an overview over the architecture and its components.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

14

User / Experimenter

USV / AUV UGV UAV

Booking tool

EDL Compiler
& Validator

Experiment
Validation

Service

Measurement
s, Results &

Status

UxV Navigation
tool

On-Board
 storage

SensorS &
Localization

Users & Rights
Service

Testbed &
Resources

Experiments /
EDL repository

Bookings Users &,
Rights

Booking
Service

M
e

ss
ag

e
 B

u
s

Testbed proxy

Web Portal

Resource
Explorer tool

Monitoring

tool
Visualization

tool
Data analysis

tool

Experiment
Controller

Launching
Service

Visualization
engine

Data analysis
engine

System
Monitoring

Service

On-board
processing

Network
 Communication

visual/graphical
editor for the EDL

textual editor
for EDL

Manual
Launching

Monitoring
manager

Testbed
manager

Resource
Controler

Network
Controler

Device
management

Testbed proxy

Monitoring
manager

Testbed
manager

Resource
Controler

Network
Controler

Testbed proxy

Monitoring
manager

Testbed
manager

Resource
Controler

Network
Controler

Testbeds
Directory

Service

Figure 1 - Architecture diagram

 D4.1 - High Level Design and Specification of RAWFIE Architecture

15

The RAWFIE architecture consist of four tiers (see Figure 1):

 Front-end tier: Providing a web based GUI that enables the user to interact with the

RAWFIE system.

 Middle tier: A collection of services and components that provide different management

and processing functionalities. Middle tier entities should support deployment in cloud

environment

 Data tier: A collection of repositories that store the different data types generated and

collected by RAWFIE

 Testbed tier: The software and hardware components that are needed to run the testbeds

and UxVs

Also RAWFIE will follow the Service Oriented Architecture [79] paradigm: All components

should provide clearly defined interfaces, so that they can be easily accessed by other component

or they may be easily replaced by other/better component with the same interface. The services

can be described in languages such as Web Services Description Language (WSDL) [80].

Interacting with them is made possible by the use of remote service control protocols such as

Simple Object Access Protocol (SOAP) [81] or the Representational State Transfer (and REST)

resource invocation style, which are based on the popular HyperText Transfer Protocol (HTTP)

These application protocols are relying on any communication system that supports HTTP, such

as the Internet protocol stack (aka. IP or TCP/IP).

Additionally, a message-based middleware (via a Message Bus) will be used where suitable.

This can provide a coherent communication model with distribution, replication, reliability,

availability, redundancy, backup, consistency, and services across distributed heterogeneous

systems. This Message Bus communication system will interconnect all components and all tiers.

It can be used for asynchronous notifications and asynchronous method calls / response handling.

As such, it may be used for transmitting measurements that will be routed from producers (e.g.

UxVs) to the consumers pertaining to the Middle tier / Data tier (e.g. experiment monitoring,

visualisation or data repositories).

3 Components overview

This chapter describes at a high level the components and the interactions between the

components. Deliverable D4.2 will give a more detailed description of the components and

interfaces. Chapter 5 provides representative use cases and corresponding sequence diagrams

depicting interactions between the various components.

Component table

In the next sections, components will be described by using tables, according to the following

template.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

16

Component Name of the component or subsystem

Responsible partner The main responsible partner. Other may also be involved (may be

added in parenthesis), but this partner has to coordinate the activities for

this component.

Parent Component None

Description A short description of the component

Provided

functionalities

List of functionalities and interfaces provides by this component

Relation to other

components

How this component will interact with other components

Related user case

sections

Use cases in which the component is involved. See chapter 4

Table 2: Template for components’ description

3.1 Front end tier

Component Web Portal

Responsible partner Fraunhofer

Parent Component None

Description The central user interface that provides access to most of the RAWFIE

tools/services and available documentation.

Provided

functionalities

- Login and access control

- Single sign on for each web tool

- Linkage of all web tools

Relation to other

components

- Provides a single point of access to the various RAWFIE Tools

through a web GUI.

Related user case

sections

- 4.1 User login, authentication and authorisation

Table 3: Web Portal

Component Resource Explorer Tool

Responsible partner Fraunhofer

Parent Component Web Portal

Description The experimenter can discover and select available testbeds as well as

resources inside a testbed with this tool

Provided

functionalities

- Visualize Data from the “Testbed, Resources” directory

- Provide ability to search and select available resources inside a

testbed

Relation to other

components
- IN Testbeds Directory Service

- OUT Booking tool (send selected resources)

Related user case

sections

- 4.3.1 Search for a resource

 D4.1 - High Level Design and Specification of RAWFIE Architecture

17

Table 4: Resource Explorer Too

Component Booking Tool

Responsible partner Fraunhofer

Parent Component Web Portal

Description The experimenter can discover and select available testbeds as well as

resources inside a testbed with this tool

Provided

functionalities

- Visualize the available dates and timeslots for each testbed

resources (calendar view)

- Select the preferred date, timeslot and/or space fragment in a

testbed

- Reserve the UxV resources for a specified time interval

Relation to other

components
- IN/OUT Booking Service (existing bookings/new bookings)

Related user case

sections

- 4.3.2 Book a resource

Table 5: Booking Tool

Component Experiment Authoring Tool

Responsible partner UOA

Parent Component Web Portal

Description This component is actually a collection of tools for defining

experiments and authoring EDL scripts through RAWFIE web portal. It

will provide features to handle resource requirements/configuration,

location/topology information, task description e.t.c.

Provided

functionalities

The supported functionalities are:

- Experiment Definition Language (EDL)

- Textual EDL editor (with syntax highlighting)

- Visual EDL editor (describes script with graphical elements)

- Textual and visual editors synchronization

- Saving EDL scripts

- Versioning of EDL scripts

- Experiment validation

- Manual Experiment launching

Relation to other

components

The authoring tool will be connected with the respective components of

the middle and data tiers. The use of EDL textual and visual editors will

trigger EDL compiler and experiment validation backend services to

perform syntactic and semantic analysis of the EDL scripts. The

authoring tool will be connected with the launching service for

scheduling the experiment executions. Moreover, this tool will interact

with the EDL repository of the data tier in order to retrieve and/or store

EDL scripts.

- IN EDL Compiler and Validation

 D4.1 - High Level Design and Specification of RAWFIE Architecture

18

- IN Experiment Validation Service

- IN Launching Service

- IN Experiment and EDL Repository

- OUT Textual and visual editor tools

Related user case

sections

- 4.2 EDL editing

Table 6: Experiment Authoring Too

Component Experiment Monitoring Tool

Responsible partner Fraunhofer

Parent Component Web Portal

Description Shows the status of experiments and of the resources used by

experiments.

Provided

functionalities

- Show status of experiments (filtered by user rights)

- Show status of resources (filtered by experiments & user rights)

Relation to other

components
- IN Launching service (state of experiments)

- IN Launching service (state of resources)

Related user case

sections

- 4.4 Experiment launching and execution

Table 7: Experiment Monitoring Tool

Component System Monitoring Tool

Responsible partner Fraunhofer

Parent Component Web Portal

Description Shows the status and the readiness of the various RAWFIE services

(mainly the ones residing in the middle tier)

Provided

functionalities

- Show status of RAWFIE system infrastructure

- Highlight potential problems

Relation to other

components
- IN System Monitoring Service (state of middle tier

infrastructure)

Related user case

sections

- 4.8 monitoring

Table 8: System Monitoring Tool

Component UxV Navigation Tool

Responsible partner CERTH

Parent Component Web Portal

Description This component will provide to the user the ability to remotely navigate

a squad of UxVs. Through a user friendly interface, the experimenter

will specify the required details of the experiment, providing

information regarding the number of the vehicles, the number of the

 D4.1 - High Level Design and Specification of RAWFIE Architecture

19

units etc.

Navigating an UxV is not an easy task and requires initial instructions

and an extensive training to become proficient. The UxV Navigation

Tool will provide the ability to non-expert users to remotely guide a

squad of robotic vehicles so as to perform basic navigation missions

such as waypoint navigation, map construction, area surveillance and

path planning.

The virtual controller will allow the experimenter to guide the vehicles

using a turn based navigation mechanism and to collect data from their

equipped sensors. Through the provided interfaces, users, specify the

next desired location for each unit. In the sequel, these instructions are

transmitted to the “Resource Controller” and sequentially, are

translated, evaluated and delivered to the robots. When all the vehicles

reach their desired position, the UxV Navigation Tool is ready to accept

a new set of instructions.

It is worth noting that in collaboration with the Monitoring tool, the

component will inform the experimenters about the current position of

the units, their sensor’s measurements etc.

Provided

functionalities

Experiments will have the ability to select the next desired location for

each unit using one of the following interfaces:

- A map of the area will illustrate the current position of each

robot. Simply, by clicking on the map, the users define the next

desired location.

- Users will also have the option to manually navigate the robots

by providing the coordinates of the next chosen position

Relation to other

components
- OUT Resource Control (transmitting the user’s instructions)

- OUT System Monitoring Tool

Related user case

sections

- 4.10 UxV remote control

Table 9: UxV Navigation Tool

Component Visualization Tool

Responsible partner EPSILON

Parent Component Web Portal

Description 2D or/and 3D visualisation of the resources in an experiment

Provided

functionalities
 (Real time) Geospatial data visualisation (WMS and WFS

services) in 2D or/and 3D;
 Show/track all moving UxV resources;
 visually connect components and display relevant parameters

through WPS service
Relation to other

components
- IN Use the UxV resource/Data service

- IN Visualization engine

 D4.1 - High Level Design and Specification of RAWFIE Architecture

20

Related user case

sections

- 4.7 View visualization of running experiment

Table 10: Visualization Tool

Component Data Analysis Tool

Responsible partner HES-SO

Parent Component Web Portal

Description Starts data analysis learning tasks and displays their results.

Provided

functionalities

- Starts data analysis processes

- Visualizes data from the “Measurements, Results, Status”

repository

- Browses the results from past analysis

- Provide commands to the Data Analysis Engine

- Specifies data analytical/learning tasks to be executed on

specific streaming datasets

Relation to other

components
- IN Measurements, Results and Status repository

- IN/OUT Data Analysis Engine (results/commands)

Related user case

sections

- 4.6 Data analysis

Table 11: Data Analysis Tool

3.2 Middle Tier

Component EDL Compiler & Validator

Responsible partner UoA

Parent Component None

Description The EDL validator will be responsible for performing syntactic and

semantic analysis on the provided EDL scripts. The validation will be

performed on top of the proposed EDL model that will be based on a

specific grammar. The EDL will give the opportunity to developers to

define commands related to the experiments covering issues like spatio-

temporal instructions to the UxVs, communication, control, sensing or

nodes and data management. The validator will access the provided

script and identify any semantic errors that could jeopardize the

execution of the experiment.

Specific constraints should be fulfilled when the experiment workflow

is defined. These constraints will be continuously checked by the

proposed authoring tool and in case some of them are validated to be

false, the errors will be presented to the experimenters through various

means (e.g., warnings). Finally, when no errors are present, the

component will have the opportunity to generate specific files e.g., part

of the final code to be uploaded in the UxVs, input to the validator,

input to the testbed proxy).

 D4.1 - High Level Design and Specification of RAWFIE Architecture

21

Provided

functionalities

Validated EDL scripts created either with the textual or the visual editor

are based on the EDL grammar and a set of pre-defined rules (i.e.,

syntactically, regarding spatial and/or spatiotemporal availability of

selected resources, control). The following list presents the

functionalities offered by the validator:

- It provides syntactic and semantic validation of each experiment

workflow.

- It applies a set of constraints that should be met in order to have

a valid experiment.

- It is capable of applying semantic checking for nodes

communication, spatio-temporal management, sensing and data

management.

- It performs code generation in the appropriate format in order to

be uploaded into the RAWFIE nodes.

Relation to other

components

The validator will be connected with the provided editors as well as

with components available in the data and the middle tier. The

authoring tool will provide input to the validator in the form of an

experiment workflow. The validator will retrieve the necessary data

(e.g., EDL model, constraints, templates) stored in the data tier and will

generate specific code blocks ready to be uploaded in the available

nodes. The output of the validator will be adopted by a number of

components like the Experiment Validation Service (EVS) or the

Launching Service and the Experiment Controller. Moreover, the EDL

validator will have access to the services provided in the data tier in

order to store or retrieve parts or a whole experiment. Finally, specific

parts of an experiment will be transferred to the testbed tier and, thus,

the EDL validator will be combined with services available in the lower

tier of the RAWFIE architecture. The following reports on the

connection of the EDL Compiler & Validator with the remaining

components of the RAWFIE architecture:

- IN Experiment Authoring Tool

- OUT Experiments and EDL Repository

- OUT Experiment Validation Service

- OUT Experiment Controller

- OUT Testbed Proxy

Related user case

sections

- 4.2 EDL editing

Table 12: EDL Compiler & Validator

Component Experiment Validation Service

Responsible partner UOA

Parent Component None

Description The Experiment Validation Service (EVS) will be responsible to

validate every experiment as far as execution issues concern. This

 D4.1 - High Level Design and Specification of RAWFIE Architecture

22

means that the EVS will validate if each experiment can efficiently be

executed in the selected testbed. The aim is to have the RAWFIE

following a pro-active approach through which the framework will be

confident that an experiment will be executed without any problems. A

number of constraints will be defined by experts that should be met

during the experiment execution. Constraints will be related to the

spatio-temporal aspect of the experiments. For instance, the EVS should

check if during the execution of an experiment collisions are avoided

and UxVs will efficiently fulfil their mission. For this, the routes of each

UxV should be defined and possible collisions will be identified. This

will stand either in terms of a single experiment or in terms of multiple

experiments. Hence, RAWFIE will be capable of supporting the

execution of multiple experiments running in parallel if, of course, there

is availability of UxVs. Cross experiments validation will be performed

accompanied by qualitative characteristics of an experiment. For

instance, the EVS, based on each experiment workflow, will retain

security and qualitative issues. Communication between nodes will be

secured as well as collision avoidance and qualitative control activities.

Provided

functionalities

The EVS aims to secure the qualitative and efficient execution of each

experiment. Validated EDL scripts will be the input to the EVS and the

result will be a set of possible errors that the experimenter should

satisfy before the actual execution of the experiment. The following list

presents the functionalities offered by the EVS:

 It provides semantic validation of each experiment workflow for the

specific testbed.

 It checks the fulfilment of a set of constraints defined by experts for

the specific testbed.

 It is capable of retaining security issues e.g., collision avoidance, and

the qualitative aspects of each experiment. Efficient communications

and control of the UxVs team will be performed in order to increase

the performance of the system.

 It performs cross experiment validation in order to help in

maximizing the performance of RAWFIE framework.

Relation to other

components

The EVS will be combined with the EDL validator receiving the

experiment workflow as input. The EVS will result in a set of errors or

will confirm the efficient execution of an experiment, information that

will be adopted by other middle tier services (e.g., launching service,

experiment control). Moreover, the EVS will have access to the services

provided in the data tier in order to retrieve parts or a whole experiment.

Finally, specific parts of an experiment will be transferred to the testbed

tier and, thus, the EVS will be combined with services available in the

lower tier of the RAWFIE architecture. The following reports on the

connection of the EDL Compiler & Validator with the remaining

components of the RAWFIE architecture:

- IN EDL Compiler & Validator

- IN Testbeds Directory Service

 D4.1 - High Level Design and Specification of RAWFIE Architecture

23

- IN Testbeds and resources Repository

- IN/OUT Experiments and EDL Repository

- OUT Experiment Authoring Tool

Related user case

sections

- 4.2 EDL editing

Table 13: Experiment Validation Service

Component Users & Rights Service

Responsible partner Fraunhofer

Parent Component None

Description Manages all the users, roles and rights in the system.

Provided

functionalities

- Check the authentication of uses

- Authorization service (check if a user is allowed to do an

specific action)

Relation to other

components

- All components that need to check users authentication and

authorizations

Related user case

sections

- 4.1 User login, authentication and authorisation

Table 14: Users & Rights Service

Component Booking Service

Responsible partner Fraunhofer

Parent Component None

Description Manages bookings of resources

Provided

functionalities

- Coordinate use of testbed resources among experimenters

- Notification mechanisms (reminder for experiments)

- Ensure fairness in resource bookings

Relation to other

components
- IN/OUT Booking Service (new bookings/existing bookings)

- IN/OUT Bookings Repository (existing bookings/new

bookings)

Related user case

sections

- 4.3.2 Book a resource

Table 15: Booking Service

Component Launching Service

Responsible partner UOA

Parent Component None

Description Schedules and launches executions of the experiments together with the

assigned booked resources

The Launching Service (LS) will be responsible for scheduling the

execution of experiments. It will support two aspects of launching:

 D4.1 - High Level Design and Specification of RAWFIE Architecture

24

(a) Short-term launching: The LS through a specific interface will

give the opportunity to experimenters to execute in real time pre-

defined and pre-approved experiments stored in the RAWFIE

system. It should be noted that this functionality will be available if

the corresponding testbed is already configured (i.e., UxVs are in

place and the necessary code is uploaded to nodes). The LS will

take as input the experiment(s) and will execute them in sequential

or in parallel according to the experimenters directions.

(b) Long-term launching: The LS will identify which experiment

should be executed according to the available bookings. It should

be noted, that the LS will execute only authorized and approved

experiments based on spatio-temporal constraints.

Provided

functionalities

The LS will provide the following functionalities:

- It schedules experiment executions based on experimenters

bookings.

- It initiates the execution of an experiment or set of experiments

real time or according to the scheduling

- It schedules the sequential or the parallel execution of

experiments.

- It supports the real time execution of pre-defined and pre-

approved experiments.

Relation to other

components

The LS will have interaction with a number of components in the

middle, data and testbed tiers. It will receive/retrieve instructions from

experimenters through real time interaction or through bookings.

Accordingly, it will send instructions to the testbed tier in order to

secure the execution of an experiment.

- IN Experiment Authoring Tool

- IN Bookings Repository

- OUT Testbed Proxy

- OUT Experiment Controller

Related user case

sections

- 4.4 Experiment launching and execution

Table 16: Launching Service

Component Experiment Controller

Responsible partner CERTH

Parent Component None

Description The Experiment Controller (EC) is a service placed in the Middle tier

and is responsible to monitor the smooth execution of each experiment.

The task of the EC is not on the control of the UxVs directly as this will

be done through the Testbed Proxy. The main task is the monitoring of

the experiment execution while acting as ‘broker’ between the

experimenter and the resources in (near) real time.

The EC will provides capabilities to support ‘complex’ experiments

 D4.1 - High Level Design and Specification of RAWFIE Architecture

25

possibly involving multiple testbeds as well as to support the manual

override of specific instructions to the resources while the experiment is

running. The EC will identify if the experiment runs smoothly and will

inform the upper layer in order to present the necessary information to

the experimenter. In addition, the EC will control the data (raw or

processed) sent back by the nodes. Hence, the EC, among others, will

have access in the Data tier in order to be capable of retrieving the

necessary data. The use of the EC in the middle tier gives RAWFIE the

opportunity to include more intelligence in the functionalities provided

related to the execution of the experiments and the level description to

waypoints (.eg., implmeent patterns of vehicle movement like

expanding ring).For instance, the system could have a view on the

correct execution of the experiment workflow, to combine multiple

UxV / Testbed types in the same experiment or to be able to monitor the

execution of more complex scenarios.

Provided

functionalities
 The EC monitors the course of actions during the experiments

execution and informs the appropriate services in the Front-end

layer.

 It gains access to the Data tier in order to be capable of

retrieving data that are going to be presented in the upper layer.

 It forwards instructions from the experimenter to the resources

for overriding the already defined experiment workflows.

Relation to other

components
- IN Launching Service

- IN/OUT Testbed Proxy

- IN/OUT Measurements, Results & Status

- OUT System Monitoring Tool

- OUT Experiment Monitoring Tool

Related user case

sections

- 4.4 Experiment launching and execution

Table 17: Experiment Controller

Component Data Analysis Engine

Responsible partner HES-SO

Parent Component None

Description Enables the execution of data processing jobs by sending requests to the

processing engine (either stream processing engine, batch or micro-

batch). Contains two major components:

- Compute Engine: the implementation that distributes

computations (eg: BLAS operations, etc).

- Frontend: the portion that relays data to the compute engine. It

also is responsible for requesting all available data (requirement:

message bus schema registry).

Provided - Requests available schemas from the Schema registry. This is a

 D4.1 - High Level Design and Specification of RAWFIE Architecture

26

functionalities sub-component of the message bus. It is the portion that handles

version invariance.

- Requests the execution of a stream/batch processing job

- Browses the results from the different analyses on the key-value

cache system, which contains the results of the analysis.

- Stores the results of the analysis on a NoSQL database store.

Relation to other

components
- IN/OUT Data Analysis Tool

- IN/OUT Measurements, Results and Status Repository

(measurements/results)

Related user case

sections

- 4.6 Data analysis

Table 18: Data Analysis Engine

Component System Monitoring Service

Responsible partner Fraunhofer (CERTH)

Parent Component None

Description Checks readiness of main components and ensure that all critical

software modules will perform at optimum levels.

Predefined actions are triggered whenever the corresponding conditions

are met, or whenever thresholds are reached, or whenever an event or

set of events are encountered, or the output of the previously mentioned

operations is stored for reference or forwarded to another process

Provided

functionalities

- Check the performance, utilizing Key Performance Indicators

(KPI)

- Run predefined action when triggers are reached

- Send notifications (e.g. via email)

- Capture alarms caused by malfuction or underperformance of

the equipment.

Relation to other

components
- IN Status and performance values from all middle tier

components

- OUT System Monitoring Tool

- OUT some component (preforming a predefined action)

- OUT some messaging system (user notifications e.g. via

email)

Related user case

sections

- 4.8 System monitoring

Table 19: System Monitoring Service

Component Testbeds Directory Service

Responsible partner IES

Parent Component None

Description Represents a registry service of the middleware tier where all the

 D4.1 - High Level Design and Specification of RAWFIE Architecture

27

integrated testbeds and resources accessible from the federated facilities

are listed, belonging to the RAWFIE federation.

This service will be the actual software interface for the Testbed

Directory, that will include information relevant to the testbeds and

possibly their resources (location, facilities) as well information on the

capabilities of a particular resource and its requirements for executing

experiments e.g. in terms of interconnectivity or dependencies

Provided

functionalities

Provides an Application Programming Interface (API), implemented

using standard architectural styles and protocols such as REST or

SOAP Web Services. This API allows other components to get access

to the information contained in the corresponding repository (Testbeds

& Resources).

Provides the pointers to the different testbeds belonging to the

RAWFIE federation.

In particular, using the provided software API it will be possible to:

- Populate the Testbeds & Resources Repository

- Look at the available testbeds list, and at their status (free,

booked, in use, and so on)

- Look at the available resources within a given testbed, and at

their status (free, booked, in use, not operational, and so on)

- Look at the description and characteristics of the testbeds (name,

location, available resources)

- Look at the description and characteristics of each resource in a

given testbed

- Look at the testbeds and resources capabilities in terms of

available technologies and tests

Relation to other

components
- IN/OUT Resource Explorer Tool

The component API is invoked by the Resource Explorer tool to

list the available testbeds and, for each testbed, the available

resources. This service will be accessed whenever an

experimenter wants to retrieve information related to available

testbeds and resources using the respective front-end tool.

- IN/OUT Testbeds & Resources Repository

The provided API, which will be in charge of executing the

queries to the Testbeds & Resources Repository, could also

allow advanced searching capabilities based on specific filters.

Related user case

sections

- 4.3.1 Search for a resource

Table 20: Testbeds Directory Service

Component Message Bus

Responsible partner IES

Parent Component None

Description Message Oriented Middleware used across all tiers to enable

 D4.1 - High Level Design and Specification of RAWFIE Architecture

28

asynchronous, event-based messaging between heterogeneous

components. Implements the Publish/Subscribe paradigm.

Different message brokers implementations and protocols for data

formatting and messaging will be investigated, these include:

- ActiveMQ

- RabbitMQ

- Apache Kafka

- MQTT

One or more of the above solutions are expected to be part of the

RAWFIE architecture, according to the requirements that will identified

for each specific communication scenarios, ranging from the need to

publish UxVs measurements to the software components running on the

upper layers, to the communication between the upper layers software

components themselves. Some information about the abovementioned

message brokers implementation and protocols are provided in Section

5.2.9.

Provided

functionalities

- Send asynchronous notifications on specific events (e.g. booking

notifications)

- Handle Publisher/Subscriber (or Publisher/Consumer)

relationships between components

- Possibility to buffer messages persistently, to ensure delivery of

messages even in case of network or system fault

- Ability to handle messages sent at various different revisions:

This prevents consumers subscribed to previous revisions from

having their components break. This allows for producer side

addition/modification of new/existing fields (correspondingly)

while not breaking consumer processes. This is added as a

general concept in the architecture as 'Schema Registry'

Relation to other

components

Different components are involved in the communication through the

Message Bus. Possible communication scenarios include the ones

described in the following

IN

- the Resource Manager in the Testbed Tier publishes information

on measurements through the message broker in the Monitoring

& Testbed Manager

- the Resource Manager tracks information on the position of the

UxVs while the test is running, and publish them for the 3D

Visualisation Engine / Tool (for final visualisation of the

resources position on the Web Portal)

OUT

- the Resource Manager in the Testbed Tier gets measurements or

other information about the status of a specific resource (UxV)

Communication between different UxVs while an experiment is

running

- the Monitoring Service / Tool consume information on

measurements published by the Resource Manager

 D4.1 - High Level Design and Specification of RAWFIE Architecture

29

- the 3D Visualisation Engine / Tool consume information about

the positions of resources (resources tracks), for final

visualisation on the Web Portal

Related user case

sections

Use case diagrams related to the Message Bus will be detailed in next

WP4 deliverables
Table 21: Message Bus

3.3 Data tier

Component Testbeds & Resources Repository

Responsible partner IES

Parent Component None

Description The Testbed and Resources Repository contains relevant information

about available testbeds (federated through the RAWFIE platform) and

their resources , such as:

- Testbed name and testbed URL (if a dedicated access portal is

also available for a specific testbed)

- Description and overview of each testbed facilities, and

corresponding resources (e.g. available UxVs)

- Overview of the reservations linked to each specific testbed

(through the relationship with the Booking Directory)

- Description and overview of specific resources (e.g. type,

technologies, tests that can be executed, and so on) for each

given testbed

- Information on the capabilities of a particular resource and its

requirements for executing experiments e.g. in terms of

interconnectivity or dependencies

Provided

functionalities

For each testbed at least the following information shall be available:

- Its name

- Its location

- A short description (possibly mentioning guidelines applying to

the testbed usage)

- Type of resource(s) available

- Total number of resources available

- Total number of resources in use

- List of resources with an indication as “available” or “booked”

- EDL control capabilities supported

- Connectivity status

Relation to other

components
- IN/OUT Testbeds Directory Service

Related user case

sections

- 4.3.1 Search for a resource

Table 22: Testbeds & Resources Repository

 D4.1 - High Level Design and Specification of RAWFIE Architecture

30

Component Experiments & EDL Repository

Responsible partner UoA

Parent Component None

Description The Experiments and EDL Repository (EER) provides the necessary

functionalities for having the experiments and EDL related data stored

in to the data tier. The EDL scripts, templates and pre-defined

constraints will be stored in the appropriate format in order to be

efficiently retrieved by the rest component of the RAWFIE framework.

It should be noted that the appropriate metadata will be adopted for each

experiment. The access to the EER will be done through interoperable

interfaces ensuring the compatibility and interoperability with other

components of the architecture.

Provided

functionalities

The EEE functionalities are as follows:

- It provides functionalities for searching, retrieving, storing and

updating of EDL scripts.

- It supports versioning of the available experiments.

Relation to other

components

The EER will be mainly combined with the components related to the

middle tier responsible for handling the experiment workflows.

Related user case

sections

- 4.2 EDL editing

Table 23: Experiments & EDL Repository

Component Bookings Repository

Responsible partner Fraunhofer

Parent Component None

Description Stores bookings and reservations of resources

Provided

functionalities

- Store time and resources that are reserved by an experimenter

Relation to other

components
- IN/OUT Booking Service

Related user case

sections

- 4.3.2 Book a resource

Table 24: Bookings Repository

Component Measurements, Results & Status Repository

Responsible partner HES-SO

Parent Component None

Description Data Stored includes:

- State of experiment executions

- Raw measurements collected during an experiment

- Results of data analyses of measurements

 D4.1 - High Level Design and Specification of RAWFIE Architecture

31

Provided

functionalities

- Load & store

Relation to other

components
- IN UxV (via Experiment Controller) (store measurements)

- IN/OUT Data Analysis Engine (results/measurements)
Related user case

sections

- 4.6 Data analysis

Table 25: Measurements, Results & Status Repository

Component Users & Rights Repository

Responsible partner Fraunhofer

Parent Component None

Description Management of authorizations and access rights. Will probably use a

LDAP server.

Provided

functionalities

- LDAP interface

Relation to other

components
- IN/OUT Users & Rights Service

Related user case

sections

- 4.1 User login, authentication and authorisation

Table 26: Users & Rights Repository

3.4 Testbed tier

Component Testbed Proxy

Responsible partner UOA

Parent Component None

Description Handles the communication between the testbed facility and the rest

tiers of RAWFIE architecture. It lies on the server side of each

RAWFIE compliant testbed facility. Several instances of Testbed proxy

can run at the same time in a RAWFIE testbed facility.

Provided

functionalities

- Ensures communication with Middle Tier

- Ensures communication with Data Tier

Relation to other

components
- IN/OUT

o Monitoring Service

o Resource Directory Service

o Experiment Controller

- OUT

o IP addresses of TP of the integrated testbed are registered

to Testbed Directory.

o Testbed and Resources Repository

o Measurements Results and Status

 D4.1 - High Level Design and Specification of RAWFIE Architecture

32

Related user case

sections4

- 4.3 Resource booking and reservation

- 4.4 Experiment launching and execution

- 4.5 Measurements recording

- 4.9 Testbed monitoring
Table 27: Testbed Proxy

Component Testbed Manager

Responsible partner UOA

Parent Component None

Description Contains accumulated information from the experiments and the devices

in the testbed. It is responsible to address initial testbed registration and

periodic updates of testbed on-going experiments. This information is

accessed by the relevant middle tier service.

Provided

functionalities

- Registers the testbed to the middle tier

- Contains the registration log for the experiments in the tested

- Periodically checks the status of the experiments

- Forwards the status of the experiments to Data Repository and to

Monitoring Tool

- Stores configuration parameters for the UxVs in the relevant

Testbed

- Buffer data in case of network connection loss to the Middle

Tier. The TM stores the last instance of each experiment as a fall

back mechanism in case that testbed loses the connection with

the middle tier. For example if there is a network problem during

the execution of the experiments, TM stores the information that

would be forwarded to the Data tier.

Relation to other

components
- IN/OUT Testbed Proxy

- IN/OUT Experiment Controller

Related user case

sections

- 4.3 Resource booking and reservation

- 4.4 Experiment launching and execution

- 4.5 Measurements recording

- 4.9 Testbed monitoring
Table 28: Testbed Manager

Component Monitoring Manager

Responsible partner UOA

Parent Component None

Description Monitors the status of the testbed and the devices belonging to it, at

functional level, i.e the ‘health of the devices’ and current activity.

Provided

functionalities

- Periodically check the current status of the available resources in

the facility like battery lifetime, CPU load, free RAM, bit error

 D4.1 - High Level Design and Specification of RAWFIE Architecture

33

rate, etc.

- Periodically check the status of the testbed facilities like weather

conditions, network connections available, etc.

- Stores the status of the testbed characteristics and the devices in

a data log.

Relation to other

components
IN/OUT Testbed Proxy

IN/OUT Data Tier

Related user case

sections

- 4.3 Resource booking and reservation

- 4.9 Testbed monitoring
Table 29: Monitoring Manager

Component Network Controller

Responsible partner Uoa

Parent Component None

Description Manages the network connections and the switching between different

technologies in the testbed. For example if a problem occurs in the

communication of the resource with the RC and subsequently with the

Experiment Manager on the RAWFIE middleware, a fall-back interface

is engaged. Through this procedure, the other networking

interface/device is enabled to avoid the uncontrolled operation of the

mobile unit and associated damages in the infrastructure. In addition this

component is responsible for security issues. The switching alternative

can be also triggered by the executed experiment.

Provided

functionalities

- Interfaces a local authorization module for allowing direct

booking and executing RAWFIE compliant experiments

- Provisioning of the network connections/technologies required

during an experiment

- Checks the communication when devices are moving between

obstacles

Relation to other

components
IN/OUT Testbed Proxy

IN/OUT Experiment Controller

Related user case

sections

- 4.4 Experiment launching and execution

- 4.9 Testbed monitoring

- 4.10 UxV remote control
Table 30: Network Controller

Component Resource Controller

Responsible partner CERTH

Parent Component None

Description The core component of the navigation system is the “Resource

Controller” which ensures the safe and accurate guidance of the UxVs.

RC commands each device to switch onboard sensors on and off At the

same time, Resource Controller informs the “Monitoring Tool” and

 D4.1 - High Level Design and Specification of RAWFIE Architecture

34

Data Tier for the gathered measurements of the sensors of each device.

“Launching Tool” interacts with the "Experiment Controller" so as to

transfer user’s preferences and instructions regarding the experiment.

The “Experiment Controller” initially, triggers the “Experiments and

EDL Repository” component and receives the user’s directions,

translated in a form of a set of waypoints. These waypoints provide

basic information about the preferable locations for each UxV. The set

of the waypoints for each robot defines the path that the experimenters

have shaped. For the navigation of a robot from its current position to

the location described by the next waypoint, the system requires a turn.

The main objective of the “Resource Controller” component is to

optimize the navigation process which takes place during a turn.

Resource Controller component navigates simultaneously all the units

of the squad. It is worth noting that the time needed for each robot to

reach its desired location is not the same for all units. Thus, the turn

concludes when all the robots reach their next location.

Additionally, it is worth mentioning that in case of emergence, the

“Resource Controller” collaborates with the “Testbed Proxy” so as to

navigate the units back to a safe position, as soon as possible.

Provided

functionalities

- The calculation the near-optimal path that the vehicles should

follow in order to reach the desired location.

- The translation of the operator’s/experiment instructions into a

reference scheme, compatible with the “Testbed Proxy”.

- The assurance that the system is performing as intended and that

the equipment is safe.

- Publish sensor values to the Data Tier/ Monitoring Tool

Relation to other

components
- IN Launching Service

- IN/OUT Testbed Proxy

- IN/OUT Monitoring Tool

- IN/OUT Data Tier

- IN/OUT Experiment Controller
Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)
- 4.11 UxV remote control (CERTH)

Table 31: Resource Controller

Component Navigation Service

Responsible partner CERTH

Parent Component Resource Controller

Description The main objective of the “Navigation Service” component is to

optimize the navigation process which takes place during a turn.

- The optimization algorithm will be based on the Cognitive-

based Adaptive Optimization (CAO) approach. CAO transforms

the navigation problem into an optimization one, which in every

 D4.1 - High Level Design and Specification of RAWFIE Architecture

35

time step the goal is to optimize the location of the UxVs so to

meet the objectives of the mission with respect to a set of

constraints.

Provided

functionalities

- Validate the next candidate position for each vehicle

Relation to other

components
 IN/OUT -> Resource Controller

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)
- 4.11 UxV remote control (CERTH)

Table 32: Navigation Service

Component UxV node

Responsible partner CSEM (MST, Robotnik)

Parent Component None

Description A single UxV node. The UxV is a complete mobile system that interacts

with the other Testbed entities. It can be remotely controlled or able to

act and move autonomously

Provided

functionalities

According to [Brugali 07] the UxV can be decomposed into four groups

(hardware interfaces, information processing, vehicle control, decision

making). They include the following unordered and non-exhaustive list

of functions and services:

- Physical interfaces to vehicle actuators and sensors

Network connection

- Data acquisition

- Data storage

- Data pre-processing (aggregation, fusion, etc.)

- Data management, representation, transfer, etc.

- Local time reference and time stamping service

- Location reference and geo-tagging service (location retrieval,

coordinate management)

- Navigation and autonomous control (involves an internal

representation of its environment, map, location awareness, path

planning, obstacle avoidance, waypoint management, hazard

management), decision-making service.

- Remote control interface, Human Robot Interaction [Goodrich

07]

- Status of the UxV (attitude-inertial measurement unit, energy,

speed, sanity, mode, etc.)

- Identification, transponding, friend or foe

Payload status

- Etc.

The specific component that allows the UxV for interacting with the

Testbed and its constituents is making use of several of the above

function and services. It will feed the Testbed experiment database with

collected data, recorded events, flight information, etc.) and it will be

 D4.1 - High Level Design and Specification of RAWFIE Architecture

36

fed with the instructions and commands corresponding to the mission it

is assigned to in the context of the experiment. It may offer a relay

platform for other Testbed components to transfer data to the ground

control and experiment control.

Relation to other

components
- IN/OUT Resource Controller

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)

- 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
 Table 33: UxV node

Component UxV - Network communication

Responsible partner CSEM

Parent Component UxV node

Description Provides communication services to the UxV

These services form the basis for the other services to interact with the

UxV (basically all features listed in the UxV node.

Provided

functionalities

- Identification service

- Data transfer service

- Status notification

- Capabilities and directory services

- Reconfiguration

Relation to other

components
- IN/OUT Network controller

- IN/OUT Experiment controller

- IN/OUT System monitoring

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)

- 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
Table 34: UxV - Network communication

Component UxV – Sensors & Localization

Responsible partner CSEM (MST, Robotnik)

Parent Component UxV node, fixed testbed node

Description Provides interfaces todifferent s installed on the UxVsensor

Provided

functionalities

Sensors are providing the application with measurement points,

typically tuples made of a location a timestamp, a source sensor and one

or several samplings.

Localisation is a specific type of measurement using positioning

systems or a combination of measurements to estimate a location.

- Estimated position of the UxV and collected data

- Sensors (fixed and mountable)

- Raw data acquisition

 D4.1 - High Level Design and Specification of RAWFIE Architecture

37

Relation to other

components
- OUT On board processing

- OUT On board storage (buffering)

- OUT Measurements, Results &Status Repository

- IN/OUT Experiment controller

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)

- 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
Table 35: UxV – Sensors & Localization

Component UxV – On board storage

Responsible partner CSEM (MST, Robotnik)

Parent Component UxV node

Description Provides storage of data inside the UxV

Provided

functionalities

- The UxV embeds some storage to store data. Typically, the data

corresponds to measurements that cannot be sent over the

communication link to the testbed manager

- Status UxV information produced during an experiment will be

internally stored for later UxV maintenance

Relation to other

components
- IN UxV – Sensors & Localization

- IN/OUT Network controller

- OUT Resource controller

- IN/OUT Measurements, Results & Status Reposotiry

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)

- 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
Table 36: UxV – On board storage

Component UxV – On board processing

Responsible partner CSEM (MST, Robotnik)

Parent Component UxV node

Description Provides processing of data inside the UxV

Provided

functionalities

- The UxV is able to process the sampled data produced by its

sensors or other information it has received through the

communication links to either increase the information level or

compress the data elements into more concise or aggregated

forms, such as compressed format, spectrographic analysis,

averages, FFT, etc.

Relation to other

components
- IN UxV – Sensors & Localization

- IN/OUT Network controller

- IN/OUT Experiment controller

- IN/OUT Measurements, results & status

Related user case - 4.4 Experiment launching and execution (UOA and CERTH)

 D4.1 - High Level Design and Specification of RAWFIE Architecture

38

sections - 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
Table 37: UxV – On board processing

Component UxV – Device management

Responsible partner CSEM

Parent Component UxV node

Description Provides network management for the UxV

Provided

functionalities

- Network connection to the base state

- Ad-hoc networks

- Device sensor controlling

Relation to other

components
- IN/OUT Network controller

- OUT Resource controller

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)

- 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
Table 38: UxV – Device management

 D4.1 - High Level Design and Specification of RAWFIE Architecture

39

3.5 Requirement mapping

The following table shows an overview which requirements (from D3.1) can be mapped to a component. Please note, that a couple of

requirements were not mapped to the architecture in this first phase. This refers to requirements PT-B-007 and TB-G-009 which are

expected to be handled in the second version of the architecture.

Components Functional Requirements Non Functional Requirements

Global PT-NF-008, PT-NF-007, PT-NF-006,

PT-NF-004, PT-NF-009, PT-NF-012

Front end tier PT-NF-001

Web Portal PT-GEN-001, PT-GEN-002, PT-P-002

Resource Explorer Tool PT-P-001, PT-A-016

Booking Tool PT-A-016, PT-B-001, PT-B-002, PT-B-003, PT-B-

005, PT-L-002

PT-NF-002

Experiment Authoring Tool PT-A-001, PT-A-002, PT-A-004, PT-A-005, PT-A-

006, PT-A-007, PT-A-008, PT-A-009, PT-A-010, PT-

A-011, PT-A-012, PT-A-013, PT-A-015, PT-L-010

Experiment Monitoring Tool PT-L-001, PT-L-003, PT-L-004 PT-NF-005

System Monitoring Tool PT-GEN-004

UxV Navigation Tool PT-L-008, PT-L-009

Visualization Tool PT-A-013, PT-L-006

Data Analysis Tool PT-E-003

Middle tier PT-NF-001, PT-NF-010, PT-NF-011

EDL Compiler & Validator PT-A-003, PT-A-014

Experiment Validation Service PT-A-009, PT-L-001

Users & Rights Service PT-GEN-002 PT-NF-002

Booking Service PT-B-003, PT-B-005, PT-B-006, PT-B-004 PT-NF-002

Launching Service PT-L-002, PT-L-003, PT-L-007, PT-E-001

Experiment Controller PT-A-005, PT-A-008, PT-L-008, PT-A-010, PT-L- PT-NF-005

 D4.1 - High Level Design and Specification of RAWFIE Architecture

40

009

Visualization Engine PT-L-005

Data Analysis Engine PT-E-002, PT-E-005

System Monitoring Service PT-GEN-004

Testbed Directory Service PT-P-004

Message Bus

Data tier PT-E-004 PT-NF-001, PT-NF-003, PT-NF-010

Testbeds & Resources

Repository

PT-P-003

Experiments and EDL

Repository

PT-P-005, PT-A-015, PT-E-001

Bookings Repository PT-A-015

Measurements, Results and

Status Repository

PT-A-007, PT-E-002

Users & Rights Repository PT-GEN-002

Testbed tier PT-NF-001

Testbed Proxy

Testbed Manager PT-P-003

Monitoring Manager

Network Controller

Resource Controller PT-NF-005

Navigation Service

UxV node PT-A-010, PT-E-002 PT-NF-005

UxV - Network communication

UxV – Sensors & Localization

UxV – On board storage

UxV – On board processing

UxV – Device management

Table 39: Allocation of Platform Requirements to Architecture Components

 D4.1 - High Level Design and Specification of RAWFIE Architecture

41

Components Functional Requirements Non Functional Requirements

Testbed tier TB-NF-G-002, TB-NF-G-005

Testbed Proxy TB-G-002 TB-NF-G-001, TB-NF-G-003, TB-NF-

G-004

Testbed Manager TB-G-003, TB-G-004, TB-G-005, TB-G-006, TB-G-

007, TB-I-001, TB-I-004, TB-R-005, TB-R-006, TB-

D-001, TB-D-002

Monitoring Manager TB-G-001

Network Controller TB-I-002, TB-I-003 TB-NF-G-004, TB-NF-G-003, TB-NF-

G-006

Resource Controller TB-G-003, TB-G-007

Navigation Service TB-G-008

UxV node TB-G-004, TB-R-001, TB-R-002, TB-R-003, TB-R-

005, TB-R-006, TB-R-007, TB-R-008, TB-R-009,

TB-R-010, TB-R-012, TB-R-013

TB-NF-R-001, TB-NF-R-003

UxV - Network communication TB-G-003, TB-I-002, TB-I-003, TB-R-013 TB-NF-G-006

UxV – Sensors & Localization TB-G-005 TB-NF-R-002

UxV – On board storage TB-R-004

UxV – On board processing

UxV – Device management TB-R-011
Table 7: Allocation of Testbed Requirements to Architecture Components

 D4.1 - High Level Design and Specification of RAWFIE Architecture

42

4 Potential use cases and sequence diagrams

In the following section, some common use cases (or user stories) are described and the

collaboration between the different components is examined. The use case consists of a

description/analysis followed by a sequence diagram that visualizes the interactions between the

components.

4.1 User login, authentication and authorisation

RAWFIE will support two user login mechanisms:

 Password-based:

o This is the common way to authentication a user by requesting username and

password. SSO will be available.

 Certificate-based

o Using X.509 client certificates to user is automatically authenticated during the

SSL handshake. (see section)

The communication between the components themselves will be secured using SSL on the

transport layer and X.509 client certificates, to control access to the services. For this purpose the

root certificate of the RAWFIE CA needs to be installed in every component and each

component will get its own signed client certificate (plus private key) to authenticate itself.

The “Users & Rights Service” will be contacted by all other components to check if a user has

the appropriate rights/roles to use them as well as to check whether a user is allowed to access or

edit a resource.
4

4.1.1 Password-based user login

 An user opens via its browser an application of the RAWFIE web page and requests a

restricted resource (URL)

 The application checks if the user is locally logged-in (e.g. via cookie for this application)

 If not

o Redirect to SSO page

o The SSO page checks if the user is globally logged in

o If not

 The user is asked for credentials (username and password)

 The SSO page sends the credentials to the User & Rights Service

4
 The RAWFIE internal access control between the components will be skipped in the most sequence diagrams, as it

is more or less a background process.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

43

 The User & Rights Service checks the credentials and returns whether

they are OK

o The SSO page redirects to the original web page (with some login token as

parameter)

o The user requests the original web page again (with some login token as

parameter)

o The application checks the login token and creates a user session (e.g. transmitted

via an cookie)

 Proceed with “Check user authorisation”

Figure 2 - Sequence Diagram – Password based user login

 D4.1 - High Level Design and Specification of RAWFIE Architecture

44

4.1.2 X.509 Certificate-based user login

 An user opens via its browser an application of the RAWFIE web page and requests a

restricted resource (URL)

 Client certificate validated during SSL handshake (transport layer)

o If correct: proceed processing in application layer

o If wrong: cancel SSL connection (end).

 Check if not logged-in (application layer)

o Read user name of the X.509 certificate and create a user session

 Proceed with “Check user authorisation”

Figure 3 - Sequence Diagram - Certificate-based user login

4.1.3 Check user authorisation

 After the user has logged in and has requested a restricted resource, the web application

checks if user is allowed to see the resource

 Component request the Users & Rights Service if there given user has the specific

role/right to see/edit this resource

 The Users & Rights Service does…

o Check if the user exits

o Get groups of the user

 D4.1 - High Level Design and Specification of RAWFIE Architecture

45

o Check if the role members contains the user or one of the groups of the user

 If ok: grant access to the user

 If wrong: show access denied to the user.

Figure 4 - Sequence Diagram - Check user authorisation

4.1.4 Trusted and secure communication between the components

The components in RAWFIE should also use X.509 certificates to establish a trusted and secured

communication between them.

 component A calls service of another component B

 Transport layer: SSL handshake with client and server certificates (on error close

connection)

 If there is a need to verify the authorisation

o checks the certificate of the component A and reads the component name out of

the certificate

o Component B calls Users & Rights Service to check if component A or the user

that has initiated the whole process has the needed roles/rights

o Transport layer: SSL handshake with client and server certificates (on error close

connection)

 D4.1 - High Level Design and Specification of RAWFIE Architecture

46

o The Users & Rights Service

 checks the certificate of the component B and reads the component name

out of the certificate and..

 checks if component B is allowed to read permissions

 checks if component A or the user has the needed roles/rights

 Returns the result (allowed/not allowed)

 If allowed

o component B executes the service method

o returns the result to component A

 If not allowed

o component B returns “access denied” to component A

 D4.1 - High Level Design and Specification of RAWFIE Architecture

47

Figure 5 - Sequence Diagram - communication between components

4.2 EDL editing

The EDL editing use case can be de-composed in two main functionalities Create and Validate

the EDL scripts. The following paragraphs elaborate on the actions to be performed. Basic

operations are also depicted in the sequence diagram. More specifically, the validation of the

EDL is performed by a two-phase validation mechanism

 Create an EDL script

o Open textual and visual editors

 D4.1 - High Level Design and Specification of RAWFIE Architecture

48

o Use functionalities simultaneously from both editors

 Synchronization is supported

o Create a new EDL script to define an experiment or

o Edit a saved EDL script

o Save changes

 Validate EDL script

o Experimenter validates the EDL script by using the EDL Complier and Validator

component

o EDL Compiler and Validator retrieves EDL model from the Experiment and EDL

Repository in order to apply respectively the validation operations.

o The EDL validator returns syntactic and semantic errors to the experimenter

o Experimenter corrects the errors

o Experimenter starts the Experiment Validation Service (EVS) to validate the

defined experiment in terms of execution efficiency and spatiotemporal issues

o EVS validates the experiment according to specific rules and constraints

o Semantic errors are displayed to the Experimenter

o Experimenter corrects the errors

o The executed EDL script is stored to the Experiment EDL Repository

Figure 6 - Sequence Diagram - EDL editing

 D4.1 - High Level Design and Specification of RAWFIE Architecture

49

4.3 Resource booking and reservation

To find the appropriate resources (UxVs, testbeds) of his experimenter, an experimenter can first

search for a resource and following he starts the booking of its.

4.3.1 Search for a resource

To reserve a testbed or just some UxVs the experimenter/user needs to search for appropriate

resources (testbed, UxVs) via the RAWFIE web portal.

 The user opens the Resource Explorer Tool

 The Resource Explorer Tool loads the available testbeds’ info from the Testbeds &

Resources Repository

 Resource Explorer Tool returns the list of testbeds to the user

 The user selects a testbed and opens the UxV view of the selected testbed

 The Resource Explorer Tool loads the available UxVs of the selected testbed from the

Testbeds & Resources Repository

 Resource Explorer Tool returns the list of UxVs to the user

 The user selects some UxVs and wants to start the booking

 Resource Explorer Tool sends a redirect to the booking tool containing the selected

resource IDs.

 The browser of the user follows the redirect and opens the booking tool (with the selected

resource IDs)

 D4.1 - High Level Design and Specification of RAWFIE Architecture

50

Figure 7 - Sequence Diagram - Search for resource, select one and start booking

4.3.2 Book a resource

 Booking Tool starts with resources of interest

 Show calendar view with current bookings of the resources of interest

 User starts the booking of the resources (selects “New booking“ from the UI)

 Show booking form

 User enters data (name, date, time, comments) and submits the form

 Booking data sent to Booking Service

 Booking Service loads all the bookings of the resource in the given time frame

 Check if there are any booking conflicts

 On OK: save booking and return ok

o Save the bookings

o Show success to user

 On conflict: return error

o Show conflict overview to user

 D4.1 - High Level Design and Specification of RAWFIE Architecture

51

Figure 8 - Sequence Diagram - Book a resource

4.4 Experiment launching and execution

RAWFIE will support two aspects of experiment launching: a) short-term launching and b) long-

term launching. In short-term launching (diagram 9) the experimenter through a specific element

of the Experiment Authoring Tool will execute pre-defined and pre-approved experiments stored

in the Experiment and EDL Repository. In case of the long-term launching (diagram 10) the

experiment is executed automatically by the launching service according to the experiment

schedule and booking.

4.4.1 Short-term launching

 Experimenter launches the experiment

 D4.1 - High Level Design and Specification of RAWFIE Architecture

52

 Experimenter opens the monitoring tool from the web portal in order to monitor the

experiment

 Launching service requests from Experiment and EDL Repository (EER) the instructions

for the experiment.

 These instructions trigger Experiment Controller which

a. Registers the experiment to Testbed Manager

b. Triggers Network manager for the provisioning of the network connections during

the experiment between the nodes

c. Forwards the instructions for experiment to Resource Controller

 Resource Controller transforms the experimenter instructions into a "global form" of

waypoints

 Resource Controller evaluates the path generated in the previous step to avoid constrains

and obstacles during the resource mission

 Resource Controller delivers the waypoints to the UxV nodes

 UxV node performs the respective actions and dispatches the relevant information back

to the Resource Controller

 Resource Controller after the internal processing returns the data to the Experimenter

Controller that transmit the collected data and monitoring results to the Experiment

Monitoring Tool

 Information and monitoring data is displayed to the Experimenter through the

Experiment Monitoring Tool of RAWFIE web portal component

 D4.1 - High Level Design and Specification of RAWFIE Architecture

53

Figure 9 - Sequence Diagram - Real time launching

4.4.2 Long term launching

 Launching service requests from Experiment and EDL Repository (EER) the instructions

for the experiment.

 These instructions trigger Experiment Controller which

a. Registers the experiment to Testbed Manager

b. Triggers Network manager for the provisioning of the network connections during

the experiment between the nodes

c. Forwards the instructions for experiment to Resource Controller

 Resource Controller transforms the experimenter instructions into a "global form" of

waypoints

 Resource Controller evaluates the path generated in the previous step to avoid constrains

and obstacles during the resource mission

 Resource Controller delivers the waypoints to the UxV nodes

 UxV node performs the respective actions and dispatches the relevant information back

to the Resource Controller

 Resource Controller after the internal processing returns the data to the Experimenter

Controller that transmit the collected data and monitoring results to the Experiment

Monitoring Tool

 D4.1 - High Level Design and Specification of RAWFIE Architecture

54

 Information and monitoring data is displayed to the Experimenter through the

Experiment Monitoring Tool of RAWFIE web portal component

Figure 10 - Sequence Diagram - Long term launching

4.5 Measurements recording

Measurements DB: The measurements database is strongly correlated with the implementation

of the message bus system. The reason for this is that data needs to be tee'd (aka forked) from the

message bus to a scalable volume storage system such as HDFS. Listed below is a suggested

data flow diagram that supports the design we proposed in section 4.6. This model is a standard

industry model and will best support the requirements for data analytics which will be worked

through in a later section. Storage of measurements is suggested to be done in a relational

database and the results of the analytics experiments is suggested to be in a NoSQL database.

HDFS provides fault tolerant storage that scales across machines (not like simple RAID based

arrays). The specific technology suggestions will be provided in a later section.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

55

Figure 11 - Sequence Diagram – Measurements recording

4.6 Data analysis

The data analysis engine will seat on the top of the data stream management and computational

infrastructure. Through it we will offer the ability to select which streaming data to work with

and run a set of available machine learning and data mining operations on it. The interaction of

the data analysis engine with the data stream management and computational infrastructure is

described in the following sequence diagram.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

56

Figure 12 - Sequence Diagram – Data analysis engine

4.7 View visualization of running experiment

The Visualization Tool will be built around a middleware engine that is capable of processing

data using parallel processing. The results will be rendered in the client application through the

web portal. The steps are sequential and will include:

 D4.1 - High Level Design and Specification of RAWFIE Architecture

57

 Assemble or link to the data to be accessed by the Visualization Engine. This includes

video data, sensor data, GPS data, etc in a form that can be used by the visualization

engine.

 Transform the data through filters (or the output of other filters) into a new usable

output. These filters use algorithms that can be freely chained together. The object

outputs can then be rendered separately by the Mappers and Actors.

 Mappers transform the data into graphics primitives. For example, they can be used to

specify a look-up table for colouring specific data. They are an abstract way to specify

what to display.

 Actors represent an object (geometry plus display properties) within the scene. Things

like color, opacity, shading, or orientation.

Figure 13 - Sequence Diagram – Running experiment visualisation

 D4.1 - High Level Design and Specification of RAWFIE Architecture

58

4.8 System monitoring

The system monitoring corresponds to a continuous processing of events or parameter values,

(good or bad), which triggers notification, actions or other stream processing, such as filtering,

log, traces, storage, etc.

4.8.1 General monitoring activities

 Events and parameter values are received by the system monitoring service (KPI)

o via Message Bus

o via Service Call

 They are analysed by a pre-defined set of rule, filters, combinations, correlators, etc.

 Predefined actions are triggered

 Actions can be

o other computations,

o user notifications (e.g. via email),

o message posted to the Message Bus

o service calls on other components

 Storing of the logs and traces

 The logs and traces can be analysed after the execution (post-mortem analysis)

 D4.1 - High Level Design and Specification of RAWFIE Architecture

59

Figure 14 - Sequence Diagram – System monitoring service – General activities

 D4.1 - High Level Design and Specification of RAWFIE Architecture

60

Note that this process may be hierarchically applied at any level of the system, e.g. on a UxV

(Device management), in the Testbed (Monitoring manager) and at the RAWFIE Federation

level (Monitoring tool). An example is given in the Testbed monitoring (section 4.9).

4.8.2 Error notifications

 Messages of special events are permanently received by the Message Bus

 The System Monitoring Service runs on a periodic basis (triggered by an internal timer)

 Load event collected from the Message Bus

 It requests from all middle tier components the status values (KPI)

 After collection of all the status values, a summary is created

 In case of an error or serious problem, an error notification is issued via email to the a

RAWFIE Platform Administrator (admin)

 The admin reads the email and opens the System Monitoring Tool to get an up-to-date

overview of the system state

 The System Monitoring Tool request the current summary from the System Monitoring

Services and returns this report back to the admin

 The admin evaluates the summary and performs the appropriate steps the resolve the

issues.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

61

Figure 15 - Sequence Diagram – System monitoring service – Error notification

4.9 Testbed monitoring

RAWFIE provides overview of each integrated testbed with the status of the relevant devices.

System Monitoring Service has a request for the information of a specific testbed. This request is

forwarded by Testbed Proxy to two related components: Testbed Manager and Monitoring

Manager. Testbed Manager contains the information about the status of experiments that are

registered in this testbed. This is send back to System Monitoring Service through Testbed

Proxy. Monitoring Manager is responsible for the micro-management of the resources.

Information as battery lifetime, CPU load, free RAM, biterror rate is gathered periodically for

both booked and unbooked UxVs. In order to receive the most recent instance from booked

resources a request is also send to Resource Controller. Resource Controller controls the UxVs

per experiment taking into consideration UxV’s system parameters like remaining battery

lifetime. This information is send back to Monitoring Manager and all the accumulated

information of the resources is forwarded as a response to System Monitoring Service via

Testbed Proxy.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

62

Figure 16 - Sequence Diagram – Testbed monitoring

4.10 UxV remote control

RAWFIE will also provide to the experimenters the ability to remotely control the vehicles. The

following diagram illustrates a real time experiment performed by an operator using the provided

remote control.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

63

Figure 17 - Sequence Diagram – UxV remote control

Initially the experimenter specifies the required details of the experiment through the UxV

Navigation Tool. Such details contain information regarding the number of the vehicles, the

purpose of the experiment etc. This tool is part of the Web Portal component.

Remotely controlled guidance mechanism relies on the philosophy of the turn-based navigation

approach. At each turn, experimenter defines the next desired location for all the UxVs through

the graphical user interface, provided by the UxV Navigation Tool. These directions are

transferred through the Experiment Controller to the Resource Controller.

Experiment Controller registers the experiment to Testbed Manager and triggers Network

manager for the provisioning of the network connections during the experiment between the

nodes

In the sequel, the Resource Controller evaluates these desirable positions and calculates the near-

optimal path that the vehicles should follow in order to reach this location. The path planning

algorithm takes into account the current location of the vehicles, the model of the robot,

navigational obstacles, the system dynamics etc. It is worth noting that the path planning

algorithm is provided by the Navigation Service component.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

64

Next, the Resource Controller translates this path into a sequence of waypoints and similarly

with the case of 4.4 (Experiment launching and execution) transmits a compact file with the

desired coordination and the orientation of the vehicle to the Testbed Proxy. At each time-step,

the Resource Controller transfers only one waypoint to the Testbed Proxy.

Then, the Testbed Proxy transmits these instructions to the vehicles which in turn, perform their

tasks. When all the UxVs reach the desired location they inform, through the Testbed Proxy, the

Resource Controller regarding their current location, their orientation and their battery level. The

Resource Controller, taking into account the actual location of the vehicles (sometimes the actual

location of a UxV may not be the most likely location due to possible localization issues),

recalculates the near-optimum path and transmits to the Testbed Proxy the next set of waypoints

(again, one waypoint for each unit). The turn concludes when all the units reach their final

location.

At this point of time, the Resource Controller interacts with the Portal so as to inform the

experimenter through the Monitoring Tool that the vehicles are ready to accept new instructions.

The Resource Controller returns the data to the Experiment Controller, and the Experiment

Controller interacts with the Monitoring Tool.

 It is worth noting that:

 The Resource Controller is able to detect and identify possible safety violations. If the

given instructions violate the safety constraints, for example, the experimenter guides 2

units at the same position; the Resource Controller ignores these directions and returns

appropriate warning messages to the user.

 The path planning algorithm takes into account the location of all the robots so as to

avoid possible collision during the navigation.

 Apparently, the time needed for each robot to reach its desired location is not the same

for all units. As a result, some of the UxVs will have to wait (after they have reached

their desired location), so as for the rest of UxVs to reach their respective next desired

position.

 The Resource Controller ensures that the system is performing as intended and

additionally, guarantees the safety of the equipment. If one of the following conditions

occurs, automatically, the component activates an emergency scenario.

o The component does not receive any feedback from the units for several time

steps

o The component receives feedback from the units which report severe localization

issues

o The component identifies crucial low battery levels

In such a situation, the Resource Controller navigates the units back to a safe position, as

soon as possible. Additionally, the experimenters receive appropriate warning messages

through the Monitoring Tool

 D4.1 - High Level Design and Specification of RAWFIE Architecture

65

5 State of the art

There are different possibilities to reach out goals described in the high level architecture above.

This chapter examines some of the FIRE projects belonging to the Future Internet Research &

Experimentation open research environment as well are relevant technological solutions that may

be adopted and expanded in RAWFIE.

5.1 Relevant FIRE projects

There were several research projects in the FIRE domain in the last years. Even though RAWFIE

targets on something special and new (the usage of UxV in the testbeds), there are probably

many ideas and architectural elements that could be reused or adapted. These projects can be

identified also in the FIRE pentagon (Figure 18 - FIRE pentagon).

Figure 18 - FIRE pentagon

5.1.1 Fed4FIRE

5.1.1.1 General description and goals

The Federation for Future Internet Research and Experimentation (Fed4FIRE) [1] is an

Integrating Project (IP) under the European Union’s Seventh Framework Programme (FP7) in

the context of the Future Internet Research and Experimentation (FIRE) programme. The

 D4.1 - High Level Design and Specification of RAWFIE Architecture

66

Fed4FIRE architecture is mainly divided in three categories: a) Federator, b) Testbed side and c)

Experimenter side

Federator

From the perspective of the Federator, several components will be provided in one or more

central locations for resource discovery, resource requirement, resource reservation and

provisioning. The components that are offered by the federator are:

o Portal: a central starting and registration place for new experimenters

o Member and slice authority: experimenters who register at the portal are registered at this

authority.

o Aggregate Manager (AM) directory: which is readable by computers to have an overview

of all testbeds available in the federation

o Documentation center: which gives an overview of available tools, testbeds and tips to

the experimenter

o Authority directory: for authentication/ authorization between experimenters and

testbeds. Fed4FIRE adopts a trust model where testbeds and authorities establish trust

relationships among each other.

o Service directory: directory service for federation and application services

Testbed

o Testbed resources: can be virtual or physical nodes that will be accessible through SSH

o Testbed management component (called Aggregate Manager): is responsible for the

discovery, reservation, and provisioning of the testbed’s resources. The testbed has the

freedom to adopt any desired software framework to implement this functionality, as long

as it can expose functions through the Aggregate Manager API. The basis of the

Fed4Ffire Aggregate Manager API adopted by the GENI Aggregate Manager API [36].

o A testbed may have an authority in the federation. This makes the testbed independent of

the availability to the Federator to allow its own experiments to participate in the

federation.

Experimenter

o Some of the tools made available to the experimenter are hosted tools. The experimenter

will make use of these tools through a browser

o Several experimenter tools for resource discovery, reservation, and provisioning already

exist and run locally on the experimenter’s computer. So these are stand-alone tools

instead of hosted tools. Examples are Omni, SFI, NERI and jFed. The experimenter has

the freedom to choose the tools of his or her preference that will be supported by

Fed4FIRE as long as it is compatible with the adopted AM API.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

67

5.1.1.2 Architectural and technological solutions

The most important software components and standards adopted by the Fed4FIRE are presented

in the following subsections.

Testbed Management

Slice Federation Architecture (SFA): key interfaces and standards of the SFA framework are the

following:

 GENI Aggregate Manager (AM) API version [36]:

 This contains a description of the API for discovery, resource requirements and

provisioning

 It defines the GENI certificates for authentication. The GENI AM API uses XML –

RPC over SSL with client authentication using X.509v3 certificates

 It defines GENI credentials for authorization

 It defines GENI URN identifiers for identifying and naming users, slices, slivers,

aggregates and others

 Ontology based resource specifications GENI RSpec [52] that comes in three parts:

 Advertisement RSpec: for resource discovery(getting a list of all resources)
 Request RSpec: for requesting specific resources
 Manifest RSpec: for describing the resource in an experiment

Experiment Control

OMF: Framework for test bed management, measurement and control

 From the experimenter's point of view, OMF [37] provides a set of tools to describe and

instrument an experiment, execute it and collect its results.

 From the testbed operator's point of view, OMF provides a set of services to efficiently

manage and operate the testbed resources (e.g. resetting nodes, retrieving their status

information, installing new OS image).

 D4.1 - High Level Design and Specification of RAWFIE Architecture

68

The following figure presents a general overview of OMF from the user's point of view. The

user/experimenter describes her experiment in a high-level domain-specific language, and passes

it on to OMF. The framework will in turn deploy and configure the experiment on the test bed(s)

according to the user's description. Then it will initiate and control the execution of this

experiment. Finally, during the experiment execution, the framework will measure and collect

data according to the user's description. These measurements are sent to a repository available to

the user and can also be used to dynamically steer the experiment control.

Figure 19 - OMF framework

It is important to note that OMF tools and software are not tied to a specific testbed technology.

Indeed, OMF has been deployed and maintained on multiple testbeds with many different types

of technologies, at NICTA, Winlab, Intel, SUNY and a US Government Lab. It has been used

regularly by many researchers and students in the previous years with some testbeds operating

24/7 providing access to experiments infrastructures to a large number of experimenters around

the world.

Experiment Measurements

OML [38] is an instrumentation tool that allows application writers to define customizable

measurement points (MP) inside new or pre-existing applications. Experimenters running the

applications can then direct the measurement streams (MS) from these MPs to remote collection

points, for storage in measurement databases.

OML consists of two main components:

 D4.1 - High Level Design and Specification of RAWFIE Architecture

69

 OML client library: the OML client library provides a C API for applications to collect

measurements that they produce. The library includes a dynamically configurable

filtering mechanism that can perform some processing on each measurement stream

before it is forwarded to the OML Server. The C library, as well as the native

implementations for Python (OML4Py) and Ruby (OML4R) are maintained here.

 OML Server: the OML server component is responsible for collecting and storing

measurements inside a database. Currently, SQLite3 and PostgreSQL are supported as

database back ends.

 The optional OML Proxy Server: when doing experiment involving disconnections from

control/measurement network (such as with mobile devices), the proxy server can be

used temporarily buffer measurement data until a connection is available to transfer it to

the collection server.

TopHat [41] is a tool that collects data from various sources of data and aggregates them in order

to expose enriched measurement data to the user. These data can typically be used for monitoring

or more generally to have a better understanding of the network. TopHat provides measurement

data and is built above the Manifold framework [41] (as is MySlice, which provides testbed-

oriented data). Manifold allows the user to query various sources of data through a single API (in

the case of TopHat, measurements through the TopHat API) while relieving the user from

needing to know which platforms must be queried. Each source of data announces what kind of

data it provides according to a common ontology. Manifold dispatches the user queries to each

relevant platform, collects their replies, combines them, and sends the result to the user. For

example TDMI provides traceroute measurements, while Maxmind can map an IP with localized

city names. Since each platform uses its own API (database, webservice), each query issued by

TopHat Manifold is translated into the platform's API through a dedicated gateway. In the same

way, the reply of the platform is translated by the gateway to be expressed in the

TopHat/Manifold format.

Facility and Infrastructure Monitoring

Zabbix [39] is an open-source solution for facility and infrastructure monitoring. It supports

performance monitoring natively, in addition to facility monitoring and alerting. It also supports

an extensive list of operating systems and platforms, including virtual machines. Three types of

resource components are available for monitoring: native Zabbix agents, SNMP monitoring and

agentless script-based queries; all data is then aggregated within a central collection server which

relies on SQL databases (MySQL or PostgreSQL) for storage.

Nagios [40] is another open-source base for infrastructure monitoring solutions. Unlike Zabbix,

it does not support performance monitoring natively. It provides status reports for hosts,

applications and networks. Nagios can also be extended through the use of user scripts run by the

Nagios Remote Plugin Executor (NRPE). It has built-in support for raising alerts on problematic

situations. Data is stored in an ad hoc backend, but some plugins allow export to SQL databases.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

70

Data can also be processed and exchanged between instances using the Nagios Remote Data

Processor (NRDP).

5.1.1.3 Conclusions and relevance for RAWFIE

RAWFIE project could leverage some elements developed in the context of the Fed4FIRE and

relevant projects. One mechanism that could be adopted by the project is the SFA standard

(specifically GENI AM API v3) together with the ontology based resource specifications

(Rspecs) for the testbed experiment lifecycle management. By using this approach, the RAWFIE

testbeds facilities must be SFA compliant to map the concepts from their resource management

system and to generate software to implement the mappings. With the SFA standard RAWFIE

will also adopt a specific well-defined trust and security framework that can be achieved by the

use of the X.509 certificate. Experimenters can obtain this certificate by the RAWFIE identity

providers. The certificates can be presented to any test facility, which makes a decision as to

whether it trusts the identity provider that signed the certificate. A test facility can do this by

reference to directory of root certificates from RAWFIE ID providers. The trust decisions are

made at the test facility level.

In addition, RAWFIE could use the OML standard to collect data from any resource (e.g., input

from temperature sensors). In this case, all RAWFIE testbeds will have to support OML. This

requires the installation of the OML client library on all testbed nodes, and the deployment of at

least one OML collection server reachable by all.

5.1.2 SUNRISE

5.1.2.1 General description and goals

The SUNRISE FP7 project (2013-2017) [67] is a project targeting Internet of Underwater Things

with main objectives to develop:

 Five federated underwater communication networks, based on pilot infrastructure already

designed, built and deployed by consortium partners, in diverse environments

(Mediterranean, Ocean, Black Sea, Lakes, Canals), web-accessible and interfaced with

existing FIRE facilities to experiment with Future Internet technologies;

 A software-defined open-architecture modem and protocol stack that will empower open

collaborative developments;

 Standard platforms for simulation, emulation and replay testing to estimate underwater

communication networks at a fraction of time, cost, complexity of current at-sea

experiments, validated by tests conducted on the SUNRISE networks over a variety of

applications and environments;

A user-friendly interface for diverse users to interact with SUNRISE systems in order to conduct

trials and benefit from databases of underwater Internet of Things (IoT) performance data

gathered over long periods from the SUNRISE infrastructure.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

71

SUNRISE aims to exceed and enhance the features supported by existing partner's test-beds and

installations by exploring, implementing, and developing a novel paradigm of software defined

modem and software defined communication stack, which allows experimentation with novel

physical layer techniques, novel cross-layer optimized and adaptive underwater communication

protocols, and novel schemes for underwater devices cooperation. SUNRISE facilities will also

provide large scale testing infrastructures (with respect to the expected size of underwater

networks and to the size of current deployments), and a level of heterogeneity in terms of assets

involved, marine environments and applications, that which is not available as of today. The

SUNRISE developed tool chain will also reduce time to market and time to experiment

considerably and will provide a key tool to support optimization of solutions, code generation,

programmability and re-programmability of underwater deployments.

SUNRISE directly addresses FIRE objectives by combining technology with novel paradigms in

new, open experimental facilities, integrating physical systems with software development into

the Internet of Underwater Things. It is the first project that develops this concept, based on joint

research performed in the partners in the last few years. SUNRISE will also provide a way to

select Internet of Underwater Things standards based on objective measures of performance,

strengthening its facilities as more sites are added in the future as a result of the two envisioned

open calls.

5.1.2.2 Architectural and technological solutions

In the SUNRISE architecture, depicted in Figure 20, a number of test-beds are federated so that

unified commands and data are sent/received by users (both common and expert users), by

means of applications and services. Data and events coming from the Federated Test-bed are

harmonized and integrated in storing systems and made accessible to applications in a

standardized format. On the other end, suitable commands can be delivered to the Federated

Test-bed in a unified format. While traversing the stack, the unified commands are transparently

translated into specific commands that can be executed on the target test-bed.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

72

Figure 20: Logic view of the SUNRISE architecture

The core of the architecture is the SUNRISE Gate. It interfaces to different experimental

infrastructures and monitoring systems (i.e. test-beds) in order to create added value applications

and services development. It seamlessly integrates heterogeneous flows of information available

in different remote systems and over the Internet. It enables presentation through customizable

GUIs and allows model-driven data processing and decision support at the application level. The

main functionalities that are provided by the SUNRISE Gate are the following:

 Resource discovery: it allows the SUNRISE gate to become aware of the functionalities

offered by the underlying test-beds,

 Reservation: users can reserve the resources on the test-beds to perform a specific

experiment,

 Provisioning: resources are granted to the user that booked them,

 Experiment control: it allows to start/stop and pause the experiment,

 Monitoring: it visualizes the main parameters of ongoing experiments,

 Permanent storage: experimental results are stored in order to be accessed for further

analysis,

 Resource release: once an experiment has been completed the resources are made

available for further experiments.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

73

Figure 21: SUNRISE Gate in its essense

The SUNRISE Gate allows gateways of the test-beds to register themselves and to upload

information about the nature and structure of the test-beds, i.e. resource discovery. Registered

users can view this information and can control some nodes in the test-beds and issue

experiments on them.

The SUNRISE Gate collects capabilities of test-beds (from 1 to p in Figure 21) and exposes them

to the applications. Several applications (from 1 to n in Figure 21) can be developed

independently. Applications can issue experiments (from 1 to m in Figure 21) on one or more

test-beds, by means of the SUNRISE Gate that knows how to launch commands on test-beds.

The SUNRISE federating architecture is intended to be integrated into the FIRE Facility (Future

Internet Research and Experimentation).

5.1.2.3 Conclusions and relevance for RAWFIE

The software infrastructure developed for the SUNRISE project has a special emphasis on

underwater acoustic communications. In particular, the middleware used to interconnect test-bed

assets and test-beds with the SUNRISE Gate was initially designed to test and simulate/emulate

underwater acoustic communications. This middleware, called SUNSET (Sapienza University

Networking framework for underwater Simulation Emulation and real-life Testing) is partially

open-source but key components are not distributed freely and require software licenses and/or

agreements with the copyright holders (University of Rome "La Sapienza"). Given that in the

RAWFIE project limited work will be done using acoustic communications and the number of

test-beds is significantly lower and less diverse, the architecture of SUNRISE project might not

be entirely suitable. However, inspiration can be drawn from a broad interpretation of the

SUNRISE architecture.

5.1.3 RELYonIT

5.1.3.1 General description and goals

The aim of RELYonIT [3] is to provide a dependability framework for IoT infrastructures by

addressing challenging interactions between WSANs and their environment. This comes from

 D4.1 - High Level Design and Specification of RAWFIE Architecture

74

the fact that in most situations IoT deployments cannot become a reality if dependable operation

expressed by parameters such as data delivery reliability and low latency is not taken into

account. The major hurdle to providing a dependable IoT is that the operation of WSAN in real

world is deeply affected by their surrounding environment. Environmental properties such as

electromagnetic interference, ambient temperature and humidity have significant impact on

achievable network performance and thus on the operational quality of service. These conditions

are not only hard to predict for a given deployment site but they also may largely vary from one

deployment site to another.

5.1.3.2 Architectural and technological solutions

Towards the realization of the previous goal the first step is the extraction of participating

entities in the dependability requirements which in the case of RELYonIT are expressed by:

 System lifetime (T)

 Data yield (R)

 Latency (L)

Then a dependability requirement is formulated by maximizing or minimizing one performance

objective subject to constraints on the remaining metrics as in equation below:

 Maximize/Minimize 𝑀1(𝑐)

 subject to 𝑀2(𝑐) ≥, ≤ 𝐶1 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑃𝑐1

 𝑀3 (𝑐) ≥, ≤ 𝐶2 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑃𝑐2

Where each 𝑀𝑖 is one among {T, R, L} and {𝐶1, 𝐶2} are constraints to be eventually satisfied

with probability 1 − 𝑃𝑐, where 𝑃𝑐 is the user-provided maximum tolerance for violating the

constraint.

The next step is the embedding of the above described optimization problem in the tool-chain

where source code development for WSN nodes is performed. The following assumptions are

also applied:

 Dependability requirements are applied to a specific protocol (sensor nodes typically

support different classes of protocols)

 Dependability requirements may change over the application execution

 Dependability requirements apply system-wide and it is not possible for two nodes to

have different dependability requirements for the same protocol at the same time.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

75

Figure 22: - Design diagram of RELYonIT tool-chain

Figure 22 presents a design sketch of RELYonIT tool-chain that connects dependability

requirements with a bundle of protocols that will exist as run-time code in each one of the sensor

nodes participating in the network. A protocol selection and parameterization tool, takes a

machine-readable specification of dependability requirements as input together with other

optimization information useful to determine the most appropriate protocol and its parameters;

the output of the protocol selection and parameterization tool is one or more protocol bundles. A

single bundle includes the chosen protocol implementation together with a predefined set of

operating parameters. The protocol bundles are deployed together with the executable

application code and a software layer that implements back-end support functionality to manage

protocol bundles. This contains a language-specific encoding of the dependability requirements

and is also in charge of the monitoring functionality needed to trigger protocol adaptations based

on changing environmental conditions.

Dependability requirements are specified using a XML schema where beyond the metric of

interest (lifetime, data yield, latency), the protocol class describing the three dominant protocol

classes of WSANs (dissemination, collection and peer-to-peer) is also included. The

dependability specification was embedded with programming languages in two ways with the

first integration target being a Java-like high level macro programming language developed in

the 7
th

 FP project makeSense [14] (MPL) and the second one a C-like based integration for the

Contiki OS, a popular operating system for WSNs [15].

Examining the possible reuse of RELYonIT architectural elements in the RAWFIE architecture

the following conclusions can be drawn:

 D4.1 - High Level Design and Specification of RAWFIE Architecture

76

 The specification language of RELYonIT is restricted to the formulation of an

optimization problem and expressivity is not broad enough for describing complex

experiments.

 Due to the different natures of nodes participating in the two projects (UxVs for

RAWFIE and sensor nodes for RELYonIT) some optimization parameters (data loss,

latency) are relevant in both cases while others like lifetime are not important in UxVs,

which are considered much more powerful devices in energy terms and selection of

communication protocols with low energy consumption is not considered a factor of

primary importance.

 Different protocol bundles (mainly focusing on data link and network layers in OSI

model terms) could be considered an element of experimentation for autonomous devices

like UxVs and any -preexisting efforts that could be applied in operating systems and

network interfaces of UxVs could be of great help for the realization of experiments.

 The level of the embedding of dependability requirements specification in a tool-chain

producing source code is also a parameter under investigation. Solutions based on a high-

level macro programming language seems more attractive (provided that

implementations of native code for abstraction classes are given) as this gives the

opportunity to test the requirements in a wide range of source codes running possibly in

different testbeds.

5.1.3.3 Conclusions and relevance for RAWFIE

Architectural concepts that could also be applied to RAWFIE are limited as the main goal of

RELYonIT is to optimize protocol performance of IoT devices in real environments and it does

not include a middleware for handling different IoT testbeds. However network experimentation

based on protocols optimization can be foreseen as a possible candidate for future RAWFIE

extensions with the downloading of different optimization engines in each one of the UxV nodes.

The optimization engine should be able to directly interact with the data link and network layer

and even with the physical layer (in the case of SDR/Cognitive Radio) of the UxV’s protocol

stack with the aim to achieve better network performance in real-world environments.

5.1.4 IoT Lab

5.1.4.1 General description and goals

“The IoT Lab is a research project exploring the potential of crowdsourcing to extend IoT

testbed infrastructure for multidisciplinary experiments with more end-user interactions” [4].

More information can be found at the IoT Lap webpage [5].

5.1.4.2 Architectural and technological solutions

To handle the heterogeneous testbeds in a common way, the testbeds are “virtualized” via a

common API: There are four individual IoT Lab testbeds. Each one with a different architecture

set of provided functionalities, etc. Each testbed is responsible for exposing its resources and

 D4.1 - High Level Design and Specification of RAWFIE Architecture

77

services over a commonly understood API. Each testbed is responsible for dealing with its

specific characteristics, such as network connectivity or its special resources.

This virtualization results in:

 Testbeds could be handled in a common way

 Testbeds provide a Fed4FIRE-compliant point of access to the outside world

o OMF client interface [25]

o Communication based on XMPP

o Resource Specification (RSpec) version 3[52] used from GENI

 There is common addressing scheme for all resources in IoT Lab

 Resource Directory can be maintained at the IoT Lab cloud (instead in the TB

themselves)

The ORBIT Measurement Library (OML) [26] is used in addition to OMF(see also 5.1.1).

The networking in IoTLab is fully based on IPv6. This guaranties interoperability between

multiple physical interfaces (Ethernet, Wi-Fi, Bluetooth, IEEE802.15.4, etc) and enables end-to-

end connectivity without the need for a NAT. In addition, IPsec is used to enable

secure/encrypted communication of potential non-secure networks.

On top of IPv6 two transport/application layers protocols are currently under validation:

 Constrained Application Protocol (CoAP) [42] (via UDP): This is HTTP like

communication. It is suitable for state transfer.

 Message Queuing Telemetry Transport (MQTT)[57]: This is a messaging protocol used

on top of TCP/IP. It is based on a publish-subscribe communication model, which is

suitable to for live data (measurements)

The current version of RSpecs was greatly extended, to also include the description of IoT

resources by incorporating into them the IPSO Application Framework [44]. This was necessary

because the RSpecs mainly focus on describing testbed facilities of computer networks typically

consisting of few servers and some network level devices such as routers and switches.

5.1.4.3 Conclusions and relevance for RAWFIE

The direct use of OML is not reasonable in the context of RAWFIE, as OML was initially

designed for regular networks. OML does not provide with any mechanism for addressing

network availability/connection problems, which will regularly occur with moving UxVs. So

OML may only be used as interface between the Testbed proxy and the Middle Tier. But inside

the testbed, other technologies should be used to transmit measurements (e.g. messages buses

with persistence).

 D4.1 - High Level Design and Specification of RAWFIE Architecture

78

The approach of virtualizing the testbed will also fit well to RAWFIE, as the different testbeds

for the UxV will be very heterogeneous. So, integrating a testbed into RAWFIE requires a

common interface (e.g. FED4FIRE compliant) exposed by the Testbed Proxy, which should hide

internal management, networking and other issues.

RAWFIE should also follow the consequent use of IPv6 to address resources.

5.1.5 WISEBED

5.1.5.1 General description and goals

The WISEBED project [6] was a 3-years EU project (2008 - 2011) funded by the European

Commission under the FP7 framework.

The aim of the project, focused on the Wireless Sensor Networks domain, was to build a

distributed infrastructure of heterogeneous and interconnected testbeds. The final target was to

move from local, small-scale testbeds with limited number of devices, to a larger-scale, federated

testbed infrastructure, resulting in a pan-European Wireless Sensor Network environment. An

interdisciplinary approach was adopted with the possibility to integrate and test hardware

solutions, software, algorithms and data, by applying the more recent research results on

algorithms and protocols for Wireless Sensor Networks measurements and communication.

5.1.5.2 Architectural and technological solutions

The WISEBED general architecture is composed by the following elements:

 The Testbed Management System

 The Testbed Interconnection System

 The per-node Software Development Kit

 The Simulation System

A set of Application Programming Interfaces (API) are defined to ensure the different

functionalities and the integration in a distributed environment:

 the WSN API provides access to the local testbed of each partner site

 the Interconnection API permits inter-testbed federation of resources

 the Monitoring API presents live testbed data in a standard format

 the OSA/V (OS Abstraction/Virtualisation) API operates on each WSN node to provide

heterogeneous and virtualised hardware support.

Together, these define the set of services that the major software elements need to offer in order

to properly interact and communicate.

The WISEBED project developed a specific Testbed Management Architecture called TARWIS

(Testbed Management Architecture for Wireless Sensor Networks). It provides the interface

through which users upload experiment software to testbeds and download results. It interacts

 D4.1 - High Level Design and Specification of RAWFIE Architecture

79

with a testbed using the developed WSN API indicated above. TARWIS provides the

functionalities such as reprogramming and reconfiguration of sensor nodes; provisions to debug

and remotely reset sensor nodes in case of node failures; and a solution for collecting and storing

experimental data. Using the WSN APIs to interact with a testbed enables TARWIS to perform

all of these standard functions independently from the node type and node operating system that

is being employed in any specific testbed. TARWIS has been integrated with the standard

WISEBED authentication/authorisation and reservation systems, providing SSO (Single Sign-

On) access for all testbed resources federated in WISEBED.

At a more detailed level from the software perspective, the following components are comprised

in each single WISEBED testbed:

1. A graphical user interface. The WiseGUI is an Open Source, Web-based Frontend,

written in HTML5 and JavaScript, for accessing WSN testbeds using suitable API. It

allows users to: look at available testbeds and testbed resources (sensor nodes);

authenticate to specific testbeds; make reservations for tests; control sensor nodes and

visualise live data streams while tests are running

2. The Testbed Runtime (TR), which provides the middleware environment with the set of

services needed to run a WSN testbed infrastructure. Specifically, it implements testbeds

and resources management and control API, such as:

a. RS (Reservation System) API, used to perform reservations

b. SNAA (Sensor Network Authentication and Authorization) API, used to control

accesses

c. iWSN (Wireless Sensor Network) API, used for controlling sensor nodes

(resources)

3. The sensor nodes (resources) themselves

The Testbed Runtime implements both SOAP and REST Web Services API. SOAP API was

actually deprecated and replaced by the new REST API used by the WiseGUI through its

JavaScript library (wisebed.js, a client library to interact with the Testbed Runtime REST API) to

allow client side access and control of the testbeds. WiseGUI also implements a direct, near real-

time WebSocket-based communication with the sensor nodes through the serial port.

The WISEBED project has also implemented and integrated additional software to support

different needs, and specifically:

 Wiselib, a template-based library, written in C++, which contains various algorithm

classes (e.g. for implementing localization and routing algorithms). It aims at helping the

realization of algorithms and protocols for Wireless Sensor Networks, and can be

compiled and used in different platforms and sensing devices

 A set of command line utilities to control experiments, in the form of a library called

wisebed.js-scripts

 D4.1 - High Level Design and Specification of RAWFIE Architecture

80

 WiseML, an XML format for representation of experiment traces (like topology

description and time representation of the experiments output), which is an extension of

the GraphML format

 The existing Shawn Wireless Sensor Network Simulation tool

o It is integrated in the WISEBED architecture

o Supports WISEBED API

o SupportsWiseML files to read and write simulation tests results and

measurements

o Supports WiseLib to simulate algorithms before bringing them in the real testbed

A WISEBED Virtual Machine (WISEBED VM) is also available, with a pre-configured

development environment for WSN applications and WISEBED testbed experimentation. It can

run also in a desktop environment allowing to test the full WISEBED toolchain deploying to

large scale testbeds. It contains:

 Compilers for various WSN hardware platforms

 Several WSN operating systems

 Wiselib library

 Shawn Simulator

 Experimentation Scripts

 Testbed Runtime (TR) WISEBED backend implementation

5.1.5.3 Conclusions and relevance for RAWFIE

WISEBED has a different scope if compared to RAWFIE. It is only focused on the Wireless

Sensor Networks domain, and on the interconnection of completely separated and already

existing testbed platforms, each of them providing its own Web accessing Portal, software

infrastructure and resources. These testbeds are interconnected, in WISEBED, through the so

called “Interconnection API”. Conversely, RAWFIE aims at developing a common platform for

the management of a federation of testbeds, by providing a single point of access and a common

software infrastructure (RAWFIE Frontend, Middle Tier and Data Tier components), for

management, execution and analysis of experiments, which are conducted using specific

resources, available at the different testbed facilities.

Nevertheless, some of the technical solutions implemented by the WISELIB project, which are

anyway freely available, could be further investigated for use in RAWFIE. These are, mainly:

 Testbed Runtime, and especially the connected testbeds and resources management and

control API:

o RS (Reservation System) API

o SNAA (Sensor Network Authentication and Authorization) API

o iWSN (Wireless Sensor Network) API

 wiselib library, which could be implemented into the sensors carried by the UxV devices

http://wisebed.eu/#appdev_wiselib
http://wisebed.eu/#appdev_shawn
http://wisebed.eu/#tools_clients
http://wisebed.eu/#tools_tr

 D4.1 - High Level Design and Specification of RAWFIE Architecture

81

 wisebed.js client library, for building custom Web clients which, using the

abovementioned API, could directly communicate with testbeds resources

 WiseML format, for the representation of experiments outputs

 The provided WISEBED VM itself

5.2 Relevant technologies

5.2.1 Experiment Description Language

5.2.1.1 OMF Experiment Description Language (OEDL)

The OEDL is a language that runs under the OMF [25], a framework for control and

management of networking testbeds. To define a scenario through the OMF framework the

experimenter uses the Experimenter Controller (EC) for running the experiment script and steer

the resources. The EC can be installed on a user-facing machine inside the testbed, or

alternatively on the user's own computer.

The OEDL language was used by several FIRE projects among them are Fed4FIRE [7] and

GENI [8] projects.

Language characteristics

An OEDL experiment description is composed of 2 main parts:

a. A first part where we declare the resources that we will use in the experiment, such as

applications or computing nodes, and some configurations that we would like to apply to

these resources.

b. A second part where we define the events that we would like to react to during the

experiment's execution, and the associated tasks we would like to execute when these

events occur.

A very simplistic OEDL experiment would look like this:

Figure 23: Experiment described in OEDL language

 D4.1 - High Level Design and Specification of RAWFIE Architecture

82

The main features of the OEDL can be distinguished into different categories:

Application Definition

In this category all application resources taking part in the experiment are defined. Each

application defines specific properties like input parameters, measurement points, and

application specific binaries. Some specific constructs derived from this category are

defApplication command is used to define a new application. Such defined application can be

used in any group of nodes as required. The defProperty command defines an experiment

property or an application property. Experiment property is a variable definition that can be used

anywhere inside the OEDL code. The defMeasurement command is used to define a single

Measurement Point (MP) inside an application definition. Also, the defMetric command defines

different output formats for the given MP.

Group Definition

In the group definition, a group of nodes are defined and combined with the applications defined

earlier. In this category, a number of OEDL specific constructs are used. The first one is

defGroup which is used to define group of nodes. addApplication is the second command used

and it adds application into the group of nodes from the application pool. Since it is possible to

add a number of identical applications within a single group, it is good practice to give unique

IDs to each added application.

Timeline Definition section

The timeline definition defines the starting and stopping moments of each defined applications

within each group of nodes. Inside OEDL language, events play a huge role. An Event is a

physical occurrence of a certain condition and an event handler performs a specific task when the

event is triggered.

Mapping OEDL to XML experiment description

Recall from experiment definition tool section that an experimenter passes three steps to finish

configuring its experiment and produce XML, OEDL. It is hidden to the experimenter however

that an OEDL file is generated from the XML file. During the making process of configuration

package, an XML template is first produced out of which the OEDL file is constructed. The

mapping of OEDL to XML is straightforward. It follows a one to one mapping except

rearrangement of text. Federation Scenario Description Language (FSDL)

 The Federation Scenario Description Language (FSDL) is a domain specific language for

specifying experimentation scenarios. FSDL provides an abstract syntax of a resource broker

meta-model. The FSDL’s concrete syntax is supported by a text editor that implements instances

of this meta-model. Syntax highlighting, context assistance, validation errors and warnings are

some of the features. FSDL is available for the Eclipse workbench and the specification

 D4.1 - High Level Design and Specification of RAWFIE Architecture

83

framework is provided as Eclipse plugins. Together they form the Federation Scenario Toolkit

(FSToolkit) [9].

Figure 24: – Federation of resource providers

Figure 24 displays resource providers forming a federation where a resource broker is capable of

exposing resources R to end-users in a uniform manner to create richer infrastructures. Resource

providers must have an API that exposes resources and enables brokers to browse and manage

them. The figure displays also that it’s possible to create a federation of federations for even

richer environments. The end-user can create scenarios involving resources in three different

ways: by directly going to a resource provider, by going to a resource broker of a federation or

finally to a large resource broker of the upper federation.

The FSToolkit tool is used in the Teagle framework for defining experiments in a textual way. It

enables inter-testbed federation scenarios by accessing different testbeds via different

authentication methods and API schemes. Thus, it is made possible that a Federation is created

for this experiment on behalf of a trusted user. Usually the user should use different tools for

each testbed and configure resources for each testbed. Then by applying proper configurations to

each testbed (i.e. public IPs on machines, installing and configuring applications) can create the

experimentation scenario. FSToolkit makes it possible to automate the whole process and enable

the formation of an inter-testbed federation scenario. In OpenLab [10], FSToolkit supports the

SFA API and thus it is able to provision resources in SFA enabled testbeds and federations.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

84

Figure 25: Plugins enable access to testbeds

The tool can handle multiple accounts even if there are many facilities offering the same API.

For example the user can configure multiple SFA accounts on many SFA enabled sites, public or

private. Identity is used by the tool for accessing the facility on behalf of the user. Queries are

made against the facility in order to find out offered resources to the user. Identity information is

also used for provisioning the resources to each individual facility. If the facility offers enough

detailed information regarding for example, resource constraints, reservation information or

other policies, these are mapped to the editor in order to ease the description of the

experimentation scenario.

In FSDL the experimenter can create an experimentation scenario that contains requested

services or resources with their configurations. In the simplest usage an FSDL definition starts

with the keyword RequestedFederationScenario? followed by a name. A set of import broker

statements that contain definitions of the brokers (the resource brokers, services and resources)

may follow. Next, one can define either a resource agnostic scenario request or specific resources

of providers.

5.2.1.2 IPAC Application Description Language (ADL)

The IPAC Application Description Language (ADL) is the most important component of the

IPAC Application Creation Environment (ACE). It provides all the necessary elements and

structures that are required for the definition of an application in the context of the IPAC project

[11]. Its syntax is simple and combines some common characteristics of well-known

programming languages. It follows a Model-Driven Architecture (MDA) approach. The IPAC

ADL consists of the basis of the ACE editors providing the necessary elements for the creation

of an application workflow. Though its syntax is simple, it covers all the aspects for applications

development. Some of its characteristics are common with other known programming languages

such as iteration commands, etc. The ADL is based on the XText framework (Eclipse XText

 D4.1 - High Level Design and Specification of RAWFIE Architecture

85

Framework) [12] that is used for the definition of the language model and the automatic

generation of the appropriate tools. The ADL grammar contains a number of BNF-like rules,

defined for every element of the language. Rules depict the functionality of each element and

they are a combination of static and dynamic parts.

5.2.1.3 Service Control Language (SCL)

The SCL language both integrates the main features of a programming language and allows

access to the various capabilities of the platform that was developed under the Polos project [13].

As far as the SCL part of a service is concerned, a service consists of one or more entry points,

which are mapped 1-to-1 to the business methods of the service EJB that is subsequently

generated and deployed on the PoLoS platform. Each entry accepts input parameters, returns a

result, and consists of a sequence of commands that allow taking the following actions:

 Variable definition and assignment

 Writing and retrieving variables to/from three specific repositories

 Operations on variables

 Indirect referencing of variables

 Invocation of PoLoS platform components

 Scheduling the execution of another service

 Invocation of other entries, services, Java methods

 Loops

 Conditional execution

 Error handling similar to the Java try/catch mechanism.

Development of the Service Creation Environment (SCE) was focussed on the design of an

appropriate service specification language, capable to support the description of the functionality

pertaining to each Location-based service (LBS). This language is based on similar languages

that exist today. The language is flexible and easy to use in order to allow for the specification

and easy deployment of any type of LBS without too much effort and cost from the service

provider. Each service will be defined through scripts written in this new language. Such scripts

run within the PoLoS kernel. To render the use of the language as efficient as possible, the

project pursues the design of an integrated development environment (IDE) that will greatly

facilitate the development and deployment of new services.

5.2.1.4 Dependability Specification Language (DSL)

The dependability specification language is an integrated language that enables the user to define

dependability requirements for different operation states of the program. Together with the

protocol and environment model, this dependability specification forms the basis for the protocol

selection and configuration. Two strategies to integrate the dependability specification with

different WSN programming languages are proposed. The first integration target is a Java-like,

high-level macro-programming language developed in the 7th framework program project

 D4.1 - High Level Design and Specification of RAWFIE Architecture

86

makeSense [14]. The second integration combines the specification with standard C code for the

Contiki platform [15]. Both solutions build on a common XML based specification language.

This DSL language was developed under the RELYonIt project [3].

The proposed DSL language focuses on three key applications properties.

a. Lifetime

b. Data yield

c. Latency

The notion of dependability includes four major aspects:

 Availability

 Reliability

 Safety

 Security

Requirements of the DSL

The dependability specification language must meet some key requirements such as:

 it must empower developers with ways to express dependability requirements on the

underlying network protocols

 it must provide inputs for protocols selection and parameterization , thus being amenable

to automated processing by dedicated optimization tools

 it must allow embedding within existing programming languages to allow the

specification of different requirements based on an application’s execution state

5.2.2 Authentication mechanism

Authentication is the process of ascertaining that somebody really is who he claims to be – short:

it verifies “who you are”.

Beside the simple username/password authentication, the following sections investigate special

authentication mechanism more in detail: Federated Identity, Single-Sign-On and X.509 client

certificate authentication.

5.2.2.1 Federated Identity

Federated identity is the means of storing electronic identity and attributes across multiple

distinct identity management systems. This means that a service or application does not need the

users credentials in order to authenticate users but relies on another trusted service or application

that is already storing the users’ electronic identity.

These are three different Federated Identity standards that were originally built to address very

different needs:

 D4.1 - High Level Design and Specification of RAWFIE Architecture

87

 SAML [16] (developed in 2002 by the OASIS) is an XML-based open standard for

exchanging authentication and authorization between parties. Its main purpose was to

facilitate Single Sign-On (SSO) for enterprise users.

 OpenID [17] is an open standard released in 2006 with the same purpose as SAML (SSO)

but for consumer apps and services

 OAuth [18] also became available in 2006 as an open standard to allow apps to share

information via APIs with the right level of authorization

It is important to note that SAML and OpenID were both authentication protocols, but OAuth

was initially an authorization protocol. SAML further developed to version 2.0 in 2005. The

standards OpenID and OAuth also evolve to OAuth 2.0 (2012) and OpenID Connect [19] (2014),

which is based on OAuth 2.0.

SAML is a quite complex standard. The SAML standard specifies three components: assertions,

protocol, and binding. There are three assertions: authentication, attribute, and authorization.

Authentication assertion validates the identity of the user, attribute assertion contains specific

information about the user, and authorization assertion identifies what the user is authorized to

do. Protocol defines how SAML asks for and receives assertions. SAML works with multiple

protocols including Hypertext Transfer Protocol (HTTP), Simple Mail Transfer Protocol

(SMTP), File Transfer Protocol (FTP) and also supports SOAP, BizTalk, and Electronic

Business XML (ebXML). A SAML binding is a mapping of a SAML protocol message onto

standard messaging formats and/or communications protocols. For example, the SAML over

SOAP or SAML over HTTP. Depending on the protocol and binding chosen, the communication

flows between the parties can vary greatly.

OpenID Connect is focuses on client developer simplicity: It used a REST API together with

JSON formatted messages. It provides specific authentication and authorization flows for web

applications, desktop applications and mobile phones.

If just authentication is needed, also X.509 client certificate (see section 5.2.2.3) could be used,

by installing the root certificates of trusted CA on the service provider.

5.2.2.2 Single-Sign-On (SSO)

SSO is the process of access control of multiple related, but independent software systems.

Different approaches are discussed in the following.

5.2.2.2.1 Kerberos

A widely used protocol is Kerberos

[20]. In Kerberos three parties are involved: the client, the

server that the client wants to use, and the Kerberos Server. Kerberos uses tickets for

authentication. To use the Kerberos service, a client must first log in to the Kerberos server. He

asks the Kerberos server for a Ticket Granting Ticket (TGT). With the TGT, the client is able to

request additional tickets for services without having to enter a password again.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

88

5.2.2.2.2 Client certificate

Certificates installed on the client machine may also be used to setup a SSO environment. See

section 5.2.2.3 for more details.

5.2.2.2.3 Cookie based Web Browser SSO

Using redirects and cookies on a central login domain, it is also possible to implement a SSO for

web applications. The main problem is that cookies are only valid for a specific domain. To have

a Cross-Domain Single Sign-On the following steps could be performed (this is just an example,

different implementation may differ):

 The user attempts to access a resource (e.g. /hello.html) at the application domain (e.g.

example.com)

 The agent realizes that the resource access restrictions and that there is no active session

yet (unable to find the user’s session cookie), so it redirects the user to central user

session page on the user management domain (e.g. users.com/check) and providing the

requested resource URL as parameter

 When the user accesses the central user session page, the agent is able to detect whether

the user has an active session (hence a previously created session cookie should be visible

there)

 When there is no session, the user is redirected to sign in page (e.g. users.com/signin),

o The user submits his credentials.

o If the credentials were correct, we redirect the user back to the session page (e.g.

users.com/check)

 Now there is a valid session (cookie) for the user management domain (e.g. users.com)

 The session page (e.g. users.com/check) now redirect this user to the source web

application (e.g. example.com/sso), while also transmitting user ID, session ID and some

other encrypted data to verify the login on the source web application. (Transmission of

all the data could be done by displaying a self-submitting HTML form to the user or by

using redirects together with URL parameters)

 The agent on web application checks the validity of the posted data (show error if not)

 A session cookie for the application’s domain (e.g. example.com) is created for the user.

 The user is again redirected to the initial requested resource (e.g.

example.com/hello.html).

 The web page sees now the session cookie on the application domain (e.g. example.com),

hence the user is logged in this web application.

 The agent checks authorization (is the user allowed to access this web page), different

methods may be used for this depending on the standard.

o If allowed: The user sees the requested content

o If not allowed: The user sees an HTTP 403 Forbidden page.

 For subsequent requests the web page will also see the session cookie on the application

domain (e.g. example.com)

SAML Web Browser SSO Profile and OpenID cConnet (see section 5.2.2.1) use similar methods

to enable SSO inside a web browser.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

89

5.2.2.3 X.509 client certificate authentication

The X.509v3 [21] standard forms the basis for digital certificates. These identify a person, a

service or a server. The most important application is the authentication of servers in SSL / TLS

(Secure Sockets Layer / Transport Layer Security) – SSLv3. But SSLv3 also supports

authentication of clients. It is a mutual authentication within which the connection is established,

both the server - as always with SSL - and the client will be authenticated.

To use it, all relevant applications (like the browser) need to support SSLv3. Additionally the

digital certificate need to be present on the client computer: it can be stored locally or on an

external storage (usually a smartcard). Browsers (like Internet Explorer or Firefox) provide tools

for managing the certificates.

The client certificate itself is created by a certification authority (CA), which signs the certificate

with an own (root) certificate (Chain of trust).

The applications themselves react automatically on certificate requests, the user just need to

initially unlock the certificate store. For the Internet Explorer this is done with the Authentication

on Windows, smartcards are usually unlocked using a PIN number.

The authentication via client certificates could also be used as SSO solution: As the

authentication runs in background, it is transparent for the user how often the certificate is

presented to different servers. In addition, the developer do not need to worry about lifetime for

browser cookies or SSO over several web domains.

On the server side, the options to enable authentication via client certificates need to be enabled.

Additionally the certificate of the signing CA needs to be registered as root certificate in the key

store of the server.

X.509 certificate authentication also used in several other FIRE projects E.g. in Fed4Fire [1] uses

this to enable user from other trusted organisations to login into their platform. This works

because they have imported the CA certificates of the trusted organisations.

5.2.3 Data analysis

Data streaming analysis is a quite young field as a result there is a quite limited set of available

open source systems that could be used in such setting and all of them have considerable

limitations, namely in terms of the quite reduced set data streaming analytics algorithms they

deliver.

 Data Stream Processing Engine (DSPE) + Samoa: SAMOA (Scalable Advanced Massive

Online Analysis) is a platform for mining big data streams. It is a distributed streaming

machine learning (ML) framework that contains a programming abstraction for

distributed streaming ML algorithms. Apache SAMOA enables development of new ML

algorithms without directly dealing with the complexity of underlying distributed stream

 D4.1 - High Level Design and Specification of RAWFIE Architecture

90

processing engines (DSPEs, such as Apache Storm, Apache S4, and Apache Samza).

Apache SAMOA users can develop distributed streaming ML algorithms once and

execute them on multiple DSPEs.

 Spark Streaming + Spark’s Machine Learning Library (MLlib): Spark Streaming is an

extension of the core Spark API that enables high-throughput, fault-tolerant stream

processing of live data streams. Data can be ingested from many sources like Kafka and

be processed using complex algorithms expressed with high-level functions like map,

reduce, join and window. Finally, processed data can be pushed out to filesystems,

databases, and live dashboards. Spark provides built-in machine learning algorithms from

its Machine Learning library (MLlib), and graph processing algorithms through its graph

and graph-parallel processing API (GraphX) on data streams.

MLlib provides a distributed machine learning (ML) library to address the growing need for

scalable ML. MLlib is developed in Spark [69], a cluster computing system designed for iterative

computation. Moreover, it is a component of a larger system called MLbase [70] that aims to

provide user-friendly distributed ML functionality both for ML researchers and domain experts.

MLlib currently consists of scalable implementations of algorithms for classification, regression,

collaborative filtering and clustering.

Comparison between the solutions Spark Streaming + MLlib and Storm + Samoa:

Comparative feature-by-feature table:

 Spark Streaming + MLlib Storm + Samoa

Status Under the Apache Software

Foundation

Undergoing Incubation at the Apache

Software Foundation

Processing Engine Spark Engine (batch) - Spark

Streaming =microbatch

Storm Engine (stream)

Distributed Yes Yes

Open Source Yes Yes

Machine Learning

library

MLlib Samoa

Stream source Kafka, Flume, HDFS (storm

entity associated to sources :

spouts)

Kafka, HDFS

Stream primitive Tuple Dstream

Computation Bolts Transformation, window operation

Stateful operations No Yes

Output/persistence Bolts foreachRDD

Hadoop distribution Hortonworks, MapR Hortonworks, Cloudera, MapR

Language option Java

Scala

Python

Java

Clojure

Scala

Python

 D4.1 - High Level Design and Specification of RAWFIE Architecture

91

Ruby

*enable the use of virtually any

programing language given the right

binding

Performance (engine) 400,000 records/s/node 10,000 records/s/node

Activity Under active development Incubation state
Table 40: Comparison of features providedfeature by Spark Streaming/MLlib and Storm/Samoafeature

Topology of both solutions:

Figure 26 - Topologies of Spark Streaming + MLlib and Storm + Samoa

Machine Learning algorithms provided:

When it comes down to the machine learning analytical tool that has to be developed, both

solutions can be used in RAWFIE but they do not directly provide what is needed. MLlib offers

a large and active set of machine learning algorithms but these are not adapted to the streaming

nature of the data that we will be dealing. Samoa on the other hand provides learning and mining

Spark

Streaming

Spark

Engine

MLlib

streams batches processed

batches

Spark Streaming + MLlib

Storm

Engine

Samoa

streams processed

streams

Storm + Samoa

 D4.1 - High Level Design and Specification of RAWFIE Architecture

92

algorithms for data streams, however the number of available algorithms is quite limited. The

main part of the data analytical project effort will thus go to the design and development of new

learning and mining algorithms for data streams in order to complement the limited pool of

available algorithms.

Currently available algorithms are:

MLlib Samoa

- Basic statistics : summary statistics,

correlations, stratified sampling, hypothesis

testing, random data generation

- Classification and regression : linear models

(SVMs, logistic regression, linear regression),

naive Bayes, decision trees, ensembles of

trees (Random Forests and Gradient-Boosted

Trees), isotonic regression

- Collaborative filtering: alternating least

squares (ALS)

- Clustering : k-means, Gaussian mixture,

power iteration clustering (PIC), latent

Dirichlet allocation (LDA), streaming k-

means

- Dimensionality reduction : singular value

decomposition (SVD), principal component

analysis (PCA)

- Feature extraction and transformation

- Frequent pattern mining: FP-growth

-Optimization (developer): stochastic

gradient descent, limited-memory BFGS (L-

BFGS)

- Prequential Evaluation Task

- Vertical Hoeffding Tree Classifier

- Adaptive Model Rules Regressor

- Bagging and Boosting

- Distributed Stream Clustering

- Distributed Stream Frequent Itemset Mining

- Every ML algorithm MOA offers :

- Classification: Bayesian classifiers, Decision

trees classifiers, Meta classifiers, Function

classifiers, Drift classifiers, Multi-label

classifiers, Active learning classifiers

- Regression: FIMTDD, AMRules

- Clustering: StreamKM++, CluStream,

ClusTree, D-Stream, CobWeb.

- Outlier detection : STORM, Abstract-C,

COD, MCOD, AnyOut

-Recommender systems: BRISMF Predictor

-Frequent pattern mining: Itemsets, Graphs

-Change detection algorithms

Table 41: Supported Algorithms in MLlib and Samoa:

5.2.4 Navigation mechanism for UxVs

In the context of the project, the experimenters will have the ability to navigate the UxVs either

through the launching tool (by executing a scenario), or directly via the supplied remote control.

The instructions of the operators will be translated/converted into waypoints and in the sequel,

they will be transmitted to the vehicles in the form of a compact message. These messages

consist of a set of coordinates for each UxV, describing their next desired location together with

information regarding their orientation.

Waypoint navigation is now considered as a standard practice and it is extensively used in the

modern literature mainly because of the following reasons:

 D4.1 - High Level Design and Specification of RAWFIE Architecture

93

1. It allows the utilization of heavyweight - but extremely accurate - navigation algorithms

on UxVs with reduced computing power. These navigation methodologies are executed

in ground control units and their results are transmitted in the form of compact messages

to the UxVs.

2. It allows the interaction of the operator with the vehicles at each time step. Even in cases

where the UxVs are executing a predefined mission, the operator has the ability to step in

and modify the scenario according to the needs that may arise.

On the other side of the spectrum, waypoint navigation requires continuous data exchange

between vehicles and the ground control unit. But, the utilization of compact messages, the size

of which is limited to few bytes per message, makes this procedure feasible and efficient.

Once the message is received by the UxVs, an on-board microcontroller takes over the

manipulation of the motion control parts of the vehicle, so that it reaches the desired location.

This controller is also known as “motion controller” and undertakes for example, in the case of

aerial robots, the rotational speed of the propeller, the pitch angle etc. There has been an

intensive effort, especially recently, towards developing efficient motion control methodologies

for aerial and ground robots, and their results are extremely encouraging. On the other hand, the

problem of accurate and efficient motion control designs for underwater vehicles still remains an

open issue [47][48].

A recent example in which the waypoint navigation approach was successfully employed is the

EU-FP7 sFly project [49]. Among the objectives of the project was also the deployment of a

team of flying robots so as to perform surveillance coverage missions over unknown terrain of

complex and non-convex morphology. According to the objective of the mission, the robots

attempt to maximize the part of the terrain that is visible while keeping the distance between

each point in the terrain and the closest team member as small as possible. A ground station

receives from every robot, its location and information regarding its field of view and, at every

time-step, transmits at every vehicle the new desired position (after an appropriate validation of

the destination). An on-board micro-motion controller translates the received messages and

guides the UAV to the next position.

In another example, within the EU-FP7 NOPTILUS project [50], the waypoint navigation

approach enables a fully functional methodology for cooperative, fully-autonomous navigation

of teams of AUVs when deployed in static or dynamic underwater map construction or dynamic

underwater phenomena tracking missions. In this case, a web-service produces waypoints with

the next optimum position for each AUV. Next, these waypoints are transferred to the vehicles

through acoustic modems and the AUVs are reaching the desired location. The highly nonlinear

nature of the AUV dynamics, the presence of strong currents and turbulences render the problem

of motion control of underwater vehicles a very challenging task. For this reason, a new

adaptive-based motion control methodology for AUVs [51] was presented and evaluated in real

world experiments. In the sequel, the vehicles are transmitting back to the web-service

 D4.1 - High Level Design and Specification of RAWFIE Architecture

94

measurements from their equipped sensors together with their exact locations, so as to fix

possible localization issues.

5.2.5 Device communication for UxVs

This paragraph presents the challenges faced by the RAWFIE UxV designers and manufacturers

in the choice of communication system to be used. It presents and discusses some of the

responses communication. The present chapter does not address the on-board communication

means, which are typically using wired communication means. They may eventually be

implemented using wireless solutions, whenever the wiring becomes overly complex or the

weight of the cables is compromising the useful UxV payload or autonomy. In such case, a care

must be brought to the coexistence of these implementations and the surrounding wireless

context.

The communication with UxV supports many functions, the most obvious being UxV control,

sensor sample collection, including video of the environment, commands, UxV status, etc.

Historically, the unmanned vehicles were first remotely controlled by directly acting on the

control devices through physically acting on them by connecting stiff wires between them and

the controller (typical of circular flight), or driving the actuators through analogue electrical

signal sent through metallic wires. Nowadays, UxV commonly typically rely on wireless

communication means, be it infrared or electromagnetic. Small UxVs operating indoors are often

using infrared transceivers for their low cost and appropriate range. Many other UxVs (indoor

and outdoor) are using electromagnetic wireless systems, which are shifting from analogue

(typically in the 27 MHz band) to digital (2.4 GHz unlicensed band is very popular), in particular

to provide a better coexistence of remotely controlled UxV in the same area.

Due to the national regulations, the UxV are often limited to Line of Sight (LoS) range, which is

corresponds in general to the best cases of using direct wireless control. These solutions are

based on short range wireless of technologies such as IEEE 802.11 or Bluetooth in all of their

flavours. Bluetooth is based on connections that may require up to a few seconds for

establishment before traffic may take place. IEEE 802.11 is quite performing in the ad-hoc mode

but at the expense of high consumption. Other technologies, developed under the generic name

of “wireless sensor networks”, are interesting and promising solutions because they exhibits low

power consumption, relatively high bit rates (up to 1Mbit/s) and are now available in single chip

or small packages solutions.

Some systems are extending the range of the wireless link by using high gain directive antennas,

but low latency and availability requirements in the interaction discard most of these solutions in

professional systems. Some professional systems are using the data communication services

offered by telecom operators (based on GSM of any generation) or satellite service providers,

typically for uploading sampled data and device status or for receiving commands, software

 D4.1 - High Level Design and Specification of RAWFIE Architecture

95

updates, etc. Still low-latency (or high reactivity) is difficult to provide to highly mobile, high

speed or long-range vehicles.

Over-the-horizon (OTH) communication raises a number of issues that are partly solved by using

satellite relay, for example UHF Satcom services, providing a data rate of 16 kbit/s. However,

due to satellite response delays, the real-time control can not be implemented over such link,

even though high-level commands, such as waypoints, can be transmitted to the UxV. [23]

More expensive or critical systems can rely on a specific communication infrastructure, fixed or

mobile, or on hybrid configurations involving several types of UxVs, such as UAVs and USVs

in which the UAV acts as a relay for the USVs.[63]

Specific requirements are put by the UxV operations. This is the case in particular when the UxV

are operated in complex, changing or unknown environments or in combination with other UxV

(collaborative teams of UxVs, swarms) and other sensors disseminated across the testbed. On a

qualitative standpoint, these requirements may impose ad-hoc communication principles, such as

connection-less interactions, delay-tolerant networking, multi-hop relay-based transmission,

combined with the support of real-time and highly reconfigurable communication topologies. It

is clear that no such technologies may comply to all of these requirements. The approach is

therefore to select a set of technologies, each of which would be appropriate to meet some of the

requirements. Furthermore, requirements can be inconsistent or contradictory when considered

globally. Once consistent sets of requirements are grouped together, then technologies may be

selected to cover each group.

There are three types of UxV control, from the most to least demanding to in terms of quality of

service for the communication and from the least to the most demanding in terms of on-board

resources: Man-in-the-loop or manual (the man is controlling the UxV in real-time, typical of

radio-controlled UxV) vs. Man-on-the-loop or semi-autonomous (mission is programmed in

advance and monitored, updates of the plan are transmitted to the UxV, as well as human

intervention, e.g. real-time compensation of deviations) vs. Autonomous (the UxV is acting

accordingly to the plan and adapts its behavior depending on an purely local control loop,

potentially aided by on-board heuristics). Usually, the autonomous systems can also be

controlled in semi-autonomous and manual modes. UxV may switch to any of the modes it is

supporting.

Commercial UxVs are usually communicating with remote controller via RF links in the ISM

bands (2.4 GHz or 5.6 GHz). More and more systems are using WIFI. Some UxV uses

approaches such as sandboxing or separation of concerns, to increase the robustness: for

example, they separate communication channels for the control function of the UxV (2.4 GHz)

and the sensory information transmission (5.8 GHz) [23].

Beyond proprietary representation of the sampled data, status or commands, the industry has

issued a number of recommendations and standards for allowing a relative vendor independent

 D4.1 - High Level Design and Specification of RAWFIE Architecture

96

market to emerge. The recent standards are based on XML, by specialising it to domains or

technologies. Standardisation is especially relevant for the data representation, for being re-used

and transferable to other bodies. Furthermore, the semantics of the carried information has also

been addressed under several initiatives towards interoperable and interchangeable systems,

processes and data exploitation. However, standards are fixed and every evolution is an issue for

the compatibility across platforms of different generations. That is the rationale behind XML,

which can embed the definition of the data representation.

Synchronisation is a function that is necessary to any entity participating to the testbed operation.

In general, GPS can be used as a global clock. Its precision is about 50 ns. However, its cost and

power consumption do not allow for its integration in all devices (e.g. simple low-cost battery-

operated sensors). Other techniques can be used, in particular those exploiting the available

communication properties.

5.2.6.1 Unmanned Aerial Vehicles

Size and weight are critical to UAVs, especially when long range and long life lifetime is sought

after. The power vs. weight ratio is of primary importance for reaching performance objectives

(speed, range, manoeuvrability, payload, etc.). Since the UAVs control relies on “sense and

avoid”, the primary concern for UAVs is to reduce the latency in the interactions between the

controller and the vehicles. This is very difficult to meet this constraint in a wireless

environment. In addition, since the wireless medium is shared among all UxVs, the access rules

must guarantee a certain level of fairness and or priorities across the network to allow for

emergency situations to be managed appropriately. [62]

Today, the most popular communication link for UAVs is based on IEEE 802.11 (WIFI), in all

its flavours, which provides a range of about 100 to 300 m in the best conditions. Directional

antennas may increase slightly this range at the risk of losing the connection when the vehicle

moves out of the transmission cone, which is a serious event for a remotely controlled aerial

vehicle. WIMAX and AirMAX were candidates for increasing the range of such wireless links in

addition to offering large datarates, but these technologies did not gain popularity and were

seldom deployed. 3G-LTE is also an option. Other issues include the absence of mobility support

in the traditional Local Area Network technologies such as WIFI or Bluetooth. WIMAX has a

support for slow mobility (10 km/h), which does not meet the requirement of swift UAVs, not

even considering the induced Doppler effect on the wireless signal. [62]

Light UAV often relied in the past on dedicated and proprietary wireless communication

systems, typically using infrared or radio-frequency physical layers. Nowadays, a lot of models

are using standard RF wireless technologies, among which Bluetooth and WIFI are the most

popular. They are also often controlled using dedicated controller or directly from tablets or

smartphones. The Wimax and Ubiquiti AirMax [63] and technologies have also been used in

aerial vehicles, but these technologies have not gained momentum.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

97

5.2.6.2 Other aerial communication technologies

Drones become major components of military applications and deployments. Although military

applications are out of the RAWFIE scope and that their specification may be far off the

RAWFIE target, the underlying technologies are mentioned for several reasons: the required

quality of service is higher and the requirements are more demanding; the operational

environments are often harsh; the missions assigned to UxV are often critical; they put the bar as

high as the most demanding application today and may be regarded as the ultimate target to be

achieved in the next generation solutions. Until now, military devices were based on components

specifically developed for the mission or mission families, but the military budget reductions led

to the search for solutions produced in greater volumes, on which the development cost can be

spread thin. More and more consumer grade and industrial grade designs and products are used

in military devices and systems, which, in turn, may be reused directly or indirectly in civil

applications (e.g. GPS). It is therefore not excluded that the following technologies or

components will be found in commercial UxVs in the future.

The Predator UAV: “Externally accessible communications capabilities include HF, UHF, VHF

radios, tactical voice and direct electronic connectivity to the UAV communications system, such

as the AN/TSQ-190 TROJAN SPIRIT II, USAF Theater Deployable Communications (TDC), or

Very Small Aperture Terminal (VSAT) for dissemination of all types of collected products.” It

includes Ku band Satcom, GBS at 6Mbit/s and LoS communication at 4.5 Mbit/s in C band. It is

planned to integrate VHF/UHF radio relays to provide AVOs communications capability with air

traffic control. [22]

The Global Hawk and DarkStar includes mission control (MCE) and ground communications

(GCE) elements. The LoS communication system is based on the Common Data Link (CDL)

technology, which supports supports 274 Mbit/s (downlink) and a 200 kbit/s (uplink). The

communication for tactical voice and connectivity to TROJAN SPIRIT II (or LMST/ICAP) and

theater communications networks between the Global Hawk and the GCE is supported by HF,

UHF, VHF radios (SHF: 1.544 Mbit/s for DarkStar and 50 Mbit/s for the Global Hawk). “A

point-to-point data link will enable UAV ground segments to send downlinked video/frame

sensor/other unexploited products directly to a collocated or geographically separate exploitation

system. Desired data rates range from 45 Mbit/s (T-3) to 1.5 Mbit/s (T-1).” [22]

The HAE UAVs will take advantage of future advancements in data link technology. The ABIT

program provides a wide band (274 Mbit/s) air-to-air relay of imagery using a UAV as a

collector and another as the relay vehicle. The CDL LOS remains the same between the relay

aircraft and the ground segment. The concept will extend the range for LOS data collection by

400-500 NM. [22]

Note that many of the military solutions partly rely on satellite data transmission (in addition to

positioning, clock synchronisation and observation data). This approach has great advantages

 D4.1 - High Level Design and Specification of RAWFIE Architecture

98

such as the global reach on large areas, possibly global when using a satellite constellation. It has

drawbacks as well, such as introducing delays in the communication (especially when using

geostationary satellites) and hieratic quality and coverage in anything else than a flat and sunny

area. For example, subterranean areas, tunnels, building indoors, etc. are not convered by

satellite. If needed, signals from and to satellites may be forwarded using relaying repeaters

between covered and uncovered areas. Flat and lightweight antennas are developed to reduce

their payload footprint so that they can used on a broader range of UAVs, including small ones

that have difficulties to beam and catch the satellite feed because they stabilisation difficulties.

5.2.6.3 Unmanned Ground Vehicles

Unmanned Ground Vehicles (UGV) are less constrained than UAV because the trade-off

between energy and weight is much looser. The fact that the UGV may often stay immobile for

long periods of time without catastrophic consequences allows for more relaxed requirements on

the communication means. Other constraints are nevertheless observed due to specific

requirements such as for all-terrain ability, speed, traffic, regulations, etc. Still the required

qualities of service include the support for sensitive, time-critical (low latency) and exchange of

mission-critical sensory information. In the past, a very high rate of failures was experienced on

the communication between operators and UGV: “Wireless communications is a known problem

in field environments” [65].

In spite of all its limitations, IEEE 802.11b is still used in much experimentation and commercial

products are now using the latest evolutions of the same standard. Interesting approaches

combine two different UxV types to achieve a given mission, during which the UAV provides

communication relay capabilities to the UGV in the case the wireless infrastructure is out of

reach of the UGV [64]. Specific radio relay infrastructures have also been proposed to

compensate the loss of signal between the UGV and the ground control station in BLOS

operations [66].

5.2.6.4 Unmanned Underground Vehicles

Building, mines or cave exploration probes, are examples of Unmanned Underground Vehicles.

They are usually not very mobile and most remain tethered. They are typically connected using

wires. When mobility is required, they can use wireless communication systems such as Wifi if

the distance is short (a few meters at most), medium frequency (in the range of 500 kHz) or

specific sound or vibration-based low data-rate communication systems (Through-the-earth

communication operating at frequencies below 10 kHz).

A technique called leaky feeding has been developed for the mining and tunnel industry. It is

based on a wired infrastructure made of coaxial cables that act as antennas; this allows for any

devices for wirelessly interact with the devices that are connected to the cable antenna. This can

be used in building as well. Note that the medium frequency based systems may use a similar

 D4.1 - High Level Design and Specification of RAWFIE Architecture

99

approach, since they would benefit from the wave guiding properties of any present metallic

environment.

5.2.6.5 Unmanned (water) Surface Vehicles

Unmanned (water) Surface Vehicles can use similar technologies to those used by ground or

aerial vehicles. Currently, WIFI has been successfully experimented for medium range

communication between the shore and USV over a few nautical miles [Bibuli Marco, Massimo

Caccia, Lionel Lapierre, Bruzzone Gabriele. Control of Un-manned Surface Vehicles:

Experiments in Vehicle Following. IEEE Robotics and Automation Magazine, Institute of

Electrical and Electronics Engineers (IEEE), 2012, pp.92-102.], using directional antennas on the

shore and omnidirectional antennas on the vehicle. The water environment imposes the antenna

of the wireless system to be put at a minimum height to minimise the skin effect of the surface.

In many cases, the use of directional antennas is preferred due to the scarce number of

participants to the wireless networks typically found at sea. However, such antennas must be

combined with other features such as stabilisation or multiple antenna inputs to compensate the

effect of waves or wind. Omnidirectional antennas are also used when numerous participants are

involved in the application or high-speed mobility is required [MOBESENS].

5.2.6.6 Unmanned Underwater Vehicles

Unmanned Underwater Vehicles traditionally use acoustic wave or optics based communication

systems. Wave-based communication is operating in the frequency range from 10 Hz to 1MHz.

Their range spans from a few hundreds of meters (vertical channel, from the surface to the

seabed, with “high” datarate) to a few kilometres (horizontal channels, low datarate). They are

used in telemetry, point to point communication, control of remotely operated vehicles and data

exchange with autonomous vehicles. Usually, moored stations are relaying (as a gateway) the

signal from and to underwater vehicles to the surface (e.g. to boats, planes, satellites or shore

stations). Underwater vehicles can also be organised in ad-hoc and mesh networks, in which the

surface relay acts as a sink or source of information. Optics based communication uses similar

principles as in the fibre optics communication, with high-power LEDs (Superflux or LumiLED)

around 500 nm wavelength and frequency modulation. It is used in line-of-sight configurations.

Note that the LED-based communication setup can also be used as a sensor.

The performance of both approaches depends on the depth of operation (euphotic, disphotic or

aphotic strates), which determines the attenuation and scattering level.

5.2.6 Cloud specifics

There are three distinguishing characteristics defining “Cloud computing” (see Figure 27):

1. involves virtualised resources (workloads are allocated among a multitude of

interconnected computers acting as a single device);

 D4.1 - High Level Design and Specification of RAWFIE Architecture

100

2. is dynamically scalable (the system can be readily enlarged);

3. acts as a service (the software and data components are shared over the Internet).

The result is a “hosted elsewhere” environment for data and services, and advantageous

environment for many data heavy and computationally demanding applications..

Figure 27 - Pros and Cons of Cloud computing

 In RAWFIE, we propose to use a SaaS Cloud solution to host both the data repositories (part of

the Data Tier) and all other software services running on the Frontend, Middle and Data Tiers.

The Testbed Tier software and infrastructures (UxV resources and Base Station/tTesbed Proxy)

will stay, of course, at the owner’s premises, and will interact with the other Tiers via network

interfaces through Internet.

Figure 28Figure 28 below shows the difference between the Cloud paradigms IaaS, PaaS and

SaaS. As it is clear from this picture, the final business idea for RAWFIE would be to provide a

platform hosted by a Cloud service provider (such as e.g. Amazon), with the running software

completely managed by the RAWFIE consortium (SaaS mode) and therefore transparent for the

end users. End users (Experimenters) will just access the platform from the online Web Portal for

registration purposes, and for booking, running experiments and analysing results.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

101

Figure 28: - Difference between IaaS, PaaS and SaaS. [24]

The Cloud is an architectural model that employs many of the same components used in

datacenters around the world today, but in a more flexible, responsive, and efficient way. The

primary difference is in how these components are tied together by using what is called a

“dynamic control plane”, which helps enlighten and inform the architecture about the rapidly

changing requirements of today's applications and data (e.g. in terms of storage capacities or

traffic volumes to handle). The “dynamic control plane” intercepts the traffic as it traverses the

Cloud, interprets the data and instructs the Cloud architecture on how to efficiently connect the

user to the appropriate application instance. In order to be ready for enterprise deployment, it

must also be scalable, adaptable, extensible, manageable, and secure with real-time performance.

Among the commercially available solutions for hosting relational databases (for the data

repositories) and services in the Cloud there is Amazon RDS (Amazon Relational Database

Service) [71] and Amazon EC2 (Amazon Elastic Compute Cloud [72]). These Amazon services

provide, in relation to the provision of a dynamic control plane, the possibility to:

 choose the needed server instances capacity (e.g. small, micro, and so on)

 get the needed server instance and configure it in such a way it will automatically scale

up or down to a new server instance (vertical scaling) with different capacity in case

more or less computational resources are required (e.g. CPU, RAM, Storage)

 get the needed server instances and configure them in such a way they can run in parallel,

using a load balancer in charge of controlling and balancing the traffic among all

available servers (horizontal scaling, i.e. parallel execution of software in multiple server

instances)

 D4.1 - High Level Design and Specification of RAWFIE Architecture

102

When a Cloud architectural model is used, the software has to be designed in such a way to get

real advantages from the possibilities described above. This is especially true when horizontal

scalability is the target: specific precautions have to be adopted in order to implement software

services that can run in a distributed way and in parallel in different servers. In practical terms,

this means that the software components have to be designed by avoiding all elements, which

link each transaction or communication flow to a single server instance. The typical example is a

horizontally scaling scenario where requests from users can be dispatched by the load balancer to

different servers in round-robin mode: a web application running on the Web Portal (Frontend

Tier) for example, has to implement the ability to maintain users’ sessions among different

server instances.

For what concerns scalability of databases, while horizontal scalability can be achieved by using

NoSQL database solutions such as CouchDB, MongoDB and Cassandra, it is hard to obtain

scalability of write intensive applications using traditional relational databases solutions like

MySQL or PostgreSQL. Amazon RDS provides a solution to cope with the needs of applications

with read-heavy database workloads. The solution is called Read Replicas, and consists in

creating many replicas of a single database instance. Once Read Replicas are created database

updates on the source database instance will be replicated using an asynchronous

replication. Multiple Read Replicas can be created for a given source database instance, and the

application’s read traffic distributed amongst them. For what concerns NoSQL databases,

Amazon provides DynamoDB, a solution expected to provide high degree of scalability.

5.2.7 Data Pipeline Architecture:

To make our analytics platform viable we envision that the data will flow in the following

manner listed below. This is a pretty standard pipeline that can be scaled at both the BUS level

(kafka [60]) as well as the compute infrastructure level (Storm/Spark). We envision our analytics

platform sitting to the side of storm/spark & passing jar jobs to it.

Figure 29 - Data pipeline architecture

 D4.1 - High Level Design and Specification of RAWFIE Architecture

103

 The diagram listed above is a standardized pipeline used in industry to pipe data into a

compute cluster (such as storm or spark).

 Here we see that the storm/spark cluster can directly talk to the confluent REST interface

to query the required schema. This ensures proper construction of RDD / batch data

structure types.

 Data between the storm/spark cluster & kafka is bi-directional: i.e. a stream is read from

& ‘enhanced’ with Machine Learning features such as anomaly detection, etc. This

‘enhanced’ stream is written to a different stream.

 We suggest confluent because of the power of it’s schema evolution features. This allows

for data structure to change over time (i.e. adding of fields/etc). More information can be

found in [73].

Problem of connectivity: Having a kafka broker on each of the devices will be a massive amount

of overhead. Furthermore there will always be re-balancing efforts taking place. Instead of that it

is better to use a cyclic buffer within librdkafka to retain a manageable portion of messages.

librdkafka also has the ability to batch compress messages (taking advantage of run-length-

encoding). Finally, there are callback functions that can be utilized to verify message delivery.

The case for structured data: structured data on write will be immensely helpful as data will not

need to be de-mangled at a later time. This also provides the ability to modularize ‘revisions’ of

different data schemas. Devices can directly talk to the schema registry on initialization to get

information about:

1. Stream’s schema (and a specific revision if need be)

2. Kafka brokers.

Figure 30 - Communication between devices and schema registry

5.2.8 Data storage

The data going into storm/spark can be tee’d off into HDFS storage for later consumption by

databases such as Impala (relational high performance in-memory). Data storage will generally

 D4.1 - High Level Design and Specification of RAWFIE Architecture

104

need to initially be dumped into HDFS & then placed into a DB. Note: Hadoop is NOT required

to have a database as the HDFS layer is independent of this. Please refer to the confluent diagram

for more information regarding how the data can be tee'd off into HDFS for use in a database

tool.

 Relational: relational databases are particularly useful if one needs to do SQL type

operations such as joins or unions, etc. They generally have quite a bit of overhead as

they need to index the data. Popular choices include Postgres & Impala. The use of

Impala is highly recommended as it byte-compresses its data and has all of its operations

written in C for effective performance. A performance comparison of Impala with other

databases is presented in Figure 31:

Figure 31 - Performance comparison of different databases

 NoSQL: these type of databases are generally used to store key:value pairs where the

value can be objects/documents, etc. They provide raw storage & access via iteration or

hash key. They do not provide the ability to do joins on columns or any other advanced

features. Redis, a lightweight key:value database is a possible solution to be utilised in

RAWFIE to store the results from the experiments.

 RDB

(i.e. MySQL)

Document Store

(i.e. MongoDB)

Column Family Store

(i.e. HBase)

DB Schema Relational Model,

Hard for graph

model

Complete schema-less Semi schema-less

Performance Too many join for

graph model

High read performance;

Potential write

performance bottleneck

High write performance

Fast key based read & Slow

range query

 D4.1 - High Level Design and Specification of RAWFIE Architecture

105

Scalability Difficult to scale-

out (manual

sharding)

Auto-sharding on pre-

defined shard key

Horizontally scalable by tablet

Query SQL Limited query language

(no join)

Key-value access;

Pig & Hive based on

MapReduce

Consistency ACID

Transactional

Eventual Consistency No multi-row transaction

Concurrency

Control

Locking or MVCC node-level locking &

atomic operation

row-based atomic

Security AuthZ & AuthN Basic security Basic security

Notification

Mechanism

Trigger No build-in notification No build-in notification

Table 42: Comparison between Relation and NoSQL databases [84]

5.2.9 Message Bus technologies and related communication protocols

This section describes the available software solutions that suit the requirements of RAWFIE in

terms of asynchronous communication between the components, using a Publish/Subscribe or

Publisher/Consumer communication model, as described in Section 3.2 - Message Bus

component. As illustrated in Figure 32, this communication model is typically realised by means

of a Message Broker, which connects different applications that can simultaneously act as

Publishers and/or Subscribers (resp. Publishers and/or Consumers).

In this section, we provide an overview of the relevant solutions that will be considered and

further analysed for possible adoption in RAWFIE.

Figure 32 - Publish/Subscribe communication pattern through the use of a Message Broker

ActiveMQ

The Apache ActiveMQ [54] Message Broker provides an open source implementation of the

Java Message Service (JMS) specifications. In acts as a reliable hub in any message oriented

 D4.1 - High Level Design and Specification of RAWFIE Architecture

106

enterprise application, and integrates perfectly with Java EE containers, ESBs, and other JMS

providers.

It is designed for high performance clustering, client-server and peer-to-peer based

communication. It uses a specific protocol, called Open Wire, to allow access to Active MQ

brokers using different programming languages and protocols. For enabling cross-language/

platform communication of different clients with ActiveMQ, the STOMP protocol [55] is also

supported. STOMP is a simple text orientated messaging protocol, which provides an

interoperable wire format which enables messaging interoperability among many languages,

platforms and brokers.

In addition, ActiveMQ provides support for different messaging protocols, transport options and

interfaces, such as:

 AMQP protocol [56] - a platform-agnostic protocol, suitable for real-time data streams

communication, and business transactions between applications, across distributed cloud

computing environments. AMQP is an OASIS standard, thus avoids the need to use

proprietary technologies and would be an interesting solution for interoperability and

ease of integration and extension of the RAWFIE platform

 REST software API - ActiveMQ implements a RESTful API to messaging, allowing any

web capable device, or web application, to publish or consume messages using a regular

HTTP POST or GET

 TCP transport - through the TCP transport Apache ActiveMQ also provides clients with

the possibility to connect to a remote ActiveMQ server by using a simple TCP socket

interface

 MQTT protocol [57] – an OASIS standard, and a protocol specifically designed to allow

connections and communication in an IoT environment. A more detailed description is

included in a following subsection.

RabbitMQ

RabbitMQ [59] is another message broker implementation which supports several messaging

protocols, directly and through the use of plugins. Several RabbitMQ servers on a local network

can be clustered together, forming a single logical broker. Like Apache ActiveMQ, supported

protocols include STOMP, AMQP and MQTT. Further, it provides:

- HTTP API to send and receive messages from a web browser (management plugin)

- STOMP messaging to the browser (Web-Stomp plugin)

- JSON-RPC lightweight remote procedure call protocol (synchronous protocol) to the

browser (channel plugin)

Apache Kafka

Apache Kafka [60] is designed so that brokers can handle terabytes of messages with minimal or

no-performances impacts. Clients (Publisher, Consumers) for Apache Kafka exists in JAVA and

most other programming languages including a high performance C library. Kafka is often used

for operational monitoring data: this involves aggregating statistics from distributed applications

to produce centralized feeds of operational data.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

107

Apache Kafka implements a tag-wise processing of data where data is consumed from topics of

raw data and then aggregated, enriched, or otherwise transformed into new Kafka topics for

further consumption. Apache Kafka multi-brokers architecture is presented in Figure 33.

Figure 33 - Apache Kafka multi-broker architecture

Figure 34 - Comparison of throughput for different message brokers [82]

Confluent

Confluent is an architecture built on top of Apache Kafka. It is developed by the same

individuals who developed the original Kafka. Kafka is an industry de facto standard and has

been demonstrated in wide use by companies such as LinkedIn, Yahoo, Spotify, Tumblr,

Coursera, etc . This should be with the preferable choice for RAWFIE as there is a massive open

 D4.1 - High Level Design and Specification of RAWFIE Architecture

108

source community companies) that upstream changes all the time and extensive changes support

Figure 35 - Confluent architecture

- Schema Registry: houses all the schema definitions. A schema definition is a simple

JSON blob that gives structure to raw data which is then compressed using AVRO. More

information can be found in [73].

- Kafka REST: confluent provides a simple REST endpoint to push and pull data to

specific stream revisions (which are tagged with a specific schema). They will however

also provide the functionality to directly write into Kafka without an intermediary REST

interface. More information can be found in [73]

 D4.1 - High Level Design and Specification of RAWFIE Architecture

109

- ZK: Zookeeper, another standard de facto synchronization mechanism. More

information can be found in [74].

- Camus: Camus is a simple MapReduce job developed by LinkedIn to load data from

Kafka into HDFS. This will be necessary to provide data to a relational (or nosql)

database down the pipeline. Confluent provides this feature for free. More information

can be found in [75].

- Hadoop: distributed file system. More information can be found in [76].

The benefits of using the confluent platform are evident above. It uses Kafka internally and

offers the ability to tee off [forked] to HDFS for use in a database storage system using their

Camus solution. It also provides a schema registry that enforces schema on write. There is no

need for any custom binary messages, etc. The data is simply JSON blobbed, on the fly batch

compressed using snappy or gzip and sent to Kafka.

MQTT Protocol and Message Brokers

MQTT (Message Queuing Telemetry Transport) [57] is a Client Server Publish/Subscribe

messaging transport protocol. It is an OASIS standard [58], and can be used to provide near to

real-time experiences and massive messaging capacity. It is supported by some of the Message

Bus solutions described before, namely Apache ActiveMQ and RabbitMQ. In addition, MQTT

Message Brokers implementation exist which only “talk” MQTT, which could be more suitable

if only the use of MQTT is the focus.

MQTT is light weight, open, simple, and designed so as to be easy to implement. These

characteristics make it ideal for use in many situations, including resource-constrained devices

and environments, such as for communication in Machine to Machine (M2M) and Internet of

Things (IoT) contexts, where a small code footprint is required and/or network bandwidth is

limited. The protocol runs over TCP/IP, or over other network protocols that provide ordered,

lossless, bi-directional connections.

Its features include:

 Use of the Publish/Subscribe message pattern which provides one-to-many message

distribution and decoupling of applications

 A messaging transport that is agnostic to the content of the payload

 Three qualities of service for message delivery:

o "At most once", where messages are delivered according to the best efforts of the

operating environment. Message loss can occur. This level could be used, for

example, with ambient sensor data where it does not matter if an individual

reading is lost as the next one will be published soon after.

o "At least once", where messages are assured to arrive but duplicates can occur.

o "Exactly once", where message are assured to arrive exactly once. This level

 D4.1 - High Level Design and Specification of RAWFIE Architecture

110

could be used, for example, with billing systems where duplicate or lost messages

could lead to incorrect charges being applied.

 A small transport overhead and protocol exchanges minimised to reduce network traffic.

 A mechanism to notify interested parties when an abnormal disconnection occurs.

The MQTT specification defines fourteen different types of Control Packets, one of which (the

PUBLISH packet) is used to convey Application Messages. Messages are encoded and carried in

binary format, using specific encoding schemes for each type of packet. Compression of the

payload data has to be applied at application level, i.e. the appropriate payload flag fields to

handle the compression details has to be defined in the application. Application-specific flags

cannot be specified in the fixed or variable headers.

MQTT-SN (MQTT for sensor networks)

MQTT-SN [61] is a variant of MQTT designed and implemented specifically for Sensor

Networks contexts. It is designed to be as close as possible to MQTT, but is adapted to the

peculiarities of a wireless communication environment such as low bandwidth, high link failures,

short message length. It is also optimized for the implementation on low-cost, battery-operated

devices with limited processing and storage resources.

Compared to the original protocol, MQTT-SN defines a new offline keep-alive procedure for the

support of sleeping clients. With this procedure, battery-operated devices can go to a sleeping

state during which all messages destined to them are buffered at the MQTT Broker / Gateway

and delivered later to them when they wake up (Figure 36). The MQTT broker / gateway needs

to be aware of the sleeping state of these clients and will buffer messages destined to them, for

later delivery when they wake up.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

111

Figure 36 - MQTT-SN clients state transition diagram [61]

5.2.10 Resource discovery

In this section, we describe the relevant standards and protocols for resource and testbed

discovery. The standards presented in this section cover both attempts to format a common

language for the description of resources as well as protocols used to find these resources in

constrained devices or over the internet.

GENI resource-request specification (RSpec)

Interoperability among different Aggregate Managers (AMs) is covered by the Global

Environment for Network Innovation (GENI) through a common language for describing

resources, resource requests, and reservations. GENI uses standardized Request Specification

(RSpec) documents which are XML documents following agreed schemas to represent resources

[52]. The schemas support aggregate or resource specific extensions. Ongoing work covers

agreeing upon ontologies for other resource types.

The GENI infrastructures have been built for exploring future Internet at-scale. It supports at-

scale experimentation on shared and heterogeneous GENI resources among multiple users,

permits users deep programmability throughout the network, and offers collaborative and

exploratory environments for innovative research and education.

http://groups.geni.net/geni/wiki/GeniRspec

 D4.1 - High Level Design and Specification of RAWFIE Architecture

112

In GENI, there are three different types of specifications for request, each used to describe

resources when communicating with an AM. The communication with the AM is based on the

common GENI AM API that requires AMs to communicate using RSpec data types.

Figure 37 - Advertisement of available resources and request for resources reservation in GENI

 Advertisement RSpec, which describes the resources that the AM has. It is sent by the

AM to the user.

 Request RSpec, which describes the resources that a user has reserved. It is sent by the

user to the AM.

 Manifest RSpec, which describes the resources that a user has reserved. It is returned by

the AM to the user.

Constrained Application Protocol (CoAP) Resource Discovery

The Constrained Application Protocol (CoAP) [42] is a specialized web transfer protocol for use

in constrained nodes (often low-end microcontrollers with small amounts of memory) and

constrained networks (low-power, lossy). The protocol is designed for machine-to-machine

(M2M) applications such as smart energy and building automation.

The discovery of resources offered by a CoAP endpoint is extremely important in M2M

applications where there are no humans in the loop and static interfaces result in fragility. The

main function of the discovery mechanism in CoAP is to provide Universal Resource Identifiers

(URI’s, called links) for the resources hosted by the server, complemented by attributes about

those resources and possible further link relations. Based on the HTTP Link Header field [45]

CoAP specifies the Constrained RESTful Environments (CoRE) Link Format [46] which is

carried as a payload in a CoAP response and is assigned an Internet media type. A well-known

relative URI “/.well-known/core” is defined as a default entry point for requesting the list of

 D4.1 - High Level Design and Specification of RAWFIE Architecture

113

links about resources hosted by a server and thus performing CoRE Resource Discovery. An

illustrative example of calling this URI follows.

CoAP Client:

REQ: GET /.well-known/core

CoAP Server:

RES: 2.05 Content

</sensors/temp>;rt=”temperature-c”;if=”sensor”,</sensor/light>;rt=”light-

lux”;if=”sensor”

In the above example a request for the supported resources by a CoAP server resulted in a

response which includes the links of the two different sensors supported by this endpoint. CoAP

utilizes port number 5683 over UDP for resource discovery.

Service Location Protocol (SLP)

The Secure Location Protocol (SLP) is one of the more used service discovery protocols. It

consists of three basic entities [53]:

- Service Agent (SA)

- Directory Agent (DA)

- User Agent (UA)

 It is a scalable, lightweight, simple, decentralized protocol and also independent by HW, SW

and the language programs. A SLP service has some “properties” that describe it. The first is the

Service URL: it is a string with a specific form, and it specifies the general category of the

service that it describes. Each service, beyond a Service URL, has a list of Attribute-Values

couples. Each attribute is a property of the service, and it is indicated by a name. This property,

typically, has one or more values: so a couple can be “Supported_Resolutions =

640X480,800X600,1024X768”. This attribute indicates that that service (that can be a monitor or

a projector) has an attribute, named “Supported_Resolutions” (that is auto-explicative) that can

assume 3 possibly values: 640X480, 800X600 and 1024X768. In addition, it has capabilities of

performing “complex” queries on attributes’ values where Boolean operators (AND, OR, NOT),

comparators (<, >, =) and functions of string matching could be adopted.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

114

Figure 38 - Service Location protocol components

The SA is the service agent: it has to register its services on the DA. The DA is the “core” of the

architecture, because it registers all the services that are offered by a network. Finally, the UA is

the client that interrogates the DA to find a specific service of a SA.

Two type of messages exchange are considered in SLP: one is for a registration of a new service

and the other for service requests.

New Service Registration

1. the SA sends a service registration request (SrvReg) to the DA when it want share an own

service;

2. the DA registers the service and replay to the SA with a service acknowledgement

message (SrvAck);

Service Request

1. the UA sends a service request (SrvRqst) asking the type and the parameters of the

desired service;

the DA checks for the UA request and answer with a service replay message (SrvRply) including

the address of the services required.

5.3 UxV technologies

In this section the two UxV manufacturer partners of the RAWFIE project describe how their

UxVs may be connected to the RAWFIE platform.

5.3.1 ROS platform control architecture

Robotnik’s mobile platforms are based on ROS (Robot Operating System).

 D4.1 - High Level Design and Specification of RAWFIE Architecture

115

ROS is an open-source, meta-operating system that provides inter-process message passing

services (IPC) in a network. It is usually running over a Linux Ubuntu 12.04 SO installed in the

robot’s computer.

ROS is also an integrated framework for robots that provides:

 Hardware abstraction layer

 Low level device control

 Robot common functionality (simulation, vision, kinematics, navigation, etc.)

 IPC

 Package and stack management

The ROS runtime "graph" is a peer-to-peer network of processes (potentially distributed across

machines) that are loosely coupled using the ROS communication infrastructure.

It also implements several different styles of communication, including synchronous RPC-style

communication over services, asynchronous streaming of data over topics, and storage of data on

a Parameter Server.

These topics are the main tool used by the system to command the movement of the robot and

stream sensor data to the user.

As an example of how Robotnik’s robots are working a more detailed description of the

summit_xl_robot control stack follows.

The summit_xl_robot real robot control stack is composed of the following packages:

 summit_xl_complete

o This package launches the complete robot. It is called from the .bashrc at system

startup. The summit_xl_complete.launch file can be configured to start the

available devices, usually: hokuyo, axis_ptz, sphere_camera,

summit_xl_controller, robotnik_gyro, summit_xl_pad, etc. Integrates several test

launch files to test kinect sensor, hokuyo laser sensor or imu.

 summit_xl_controller

o Low level robot control of the 4 servos. This package contains the robot control

functions to operate the skid-steering structure (velocity control of the axes and

position control of the robot) and to get accurate odometry estimations from the

robot sensors. This node subscribes to cmd_vel messages.

 summit_xl_navigation

o This package uses the ros navigation stack (move_base node) to allow sending

goals to the robot in Cartesian coordinates. It allows also gmapping configuration.

 summit_xl_pad

 D4.1 - High Level Design and Specification of RAWFIE Architecture

116

o Allows to use a joystick to operate the summit_xl_controller, sending the

messages received through the joystick input, correctly adapted to the topic. The

speed level is also commanded. The node allows to load different types of

joysticks (PS3, Logitech, Thrustmaster). New models can be easily added by

creating new .yaml files. If modbus_io node is available, the digital outputs

(ligths, axes, etc.) can also be controlled with the pad. If a sphere_camera is

available, the pan-tilt can also be commanded with the pad.

 robotnik_msgs

o Simple package that contains standard services and messages commonly used in

mobile robots.

 summit_xl_web

o ROS Web Tools based package to access the robot via web browser. It allows to

move the PTZ camera and the robot and is intended as a template to be configured

by the user.

 gps_map_tf

o This package is intended to publish the transform from map->odom in order to

use gps coordinates to localize the robot and in order to use the move_base stack

in Cartesian coordinates (it does the equivalent tf publication). It allows to set the

coordinates origin and to align the robot heading with the gps coordinate system

heading. This package can be used together with summit_xl_waypoints to set a

sequence of GPS cartesian coordinates to be sent to the robot.

To address the issue of the communication between ROS environment and RAWFIE UGV node,

the system will have to make use of some tools that ROS provides in order to stream data and

read/write the topics needed to command the robots.

There is a particular ROS Stack called rosbridge_suite [68] that provides a JSON API to ROS

functionality for non-ROS programs. There are a variety of front ends that interface with

rosbridge, including a WebSocket server for web browsers to interact with.

The conclusion is that we can implement a Rosbridge server in the robot system, while UGV

node should make use of Rosbridge API.

This Rosbridge library is a Python library responsible for taking JSON strings and converting

them to ROS messages, and vice versa. Rosbridge library is meant to be used as a library for

transport layer packages. For example, the rosbridge_server package creates a WebSocket

connection and uses the rosbridge library to handle the JSON to ROS conversion.

Any Python package or program can use rosbridge library for direct JSON to ROS

communication. For example, a TCP server, a serial bridge, etc.

A step further would be to share a list of these needed topics and exact functionalities that are

being controlled by RAWFIE Testbed Tier Components.

http://wiki.ros.org/WebSocket

 D4.1 - High Level Design and Specification of RAWFIE Architecture

117

FurtherMore information about the Summit_XL Simulation stack is available can be found at

[77] and about the for Kobuki stack (turtlebot mobile platform) is available at [78].

5.3.2 USV platform

The autonomous vehicles developed by MST for the RAWFIE project use the LSTS (underwater

Systems and Technology Laboratory) toolchain, developed in cooperation with the University of

Porto. This toolchain comprises four components which are described in the following

paragraphs.

GLUED (GNU/Linux Uniform Environment Distribution)

GLUED is a minimal Linux distribution targeted at embedded systems and based on cross-

compiled binaries. The target's runtime environment and compilers are generated on a host

machine with different computer architecture. The main computer of MST vehicles will use

GLUED for reliability and performance reasons. The most important features of GLUED are the

following:

 Small footprint (around 10 MiB);

 Fast boot time (2 to 5 seconds depending on target machine and peripherals);

 Reproducible root filesystem;

 Fast and controlled full system upgrades (10 to 30 seconds);

 Support for several x86, ARM, and MIPS targets.

IMC (Inter-module Communication) Protocol

IMC is a message-oriented protocol for autonomous vehicles and sensor networks. The IMC

protocol defines and documents a set of messages, encoded in a single XML file that is then

translated to source code of several programming languages. The IMC protocol comprises

different logical message groups for networked vehicle and sensor operations. It defines an

infrastructure that is modular and provides different layers of control and sensing. The set of

messages defined in the IMC protocol is sufficient to monitor and control AUVs, ASVs, ROVs,

UAVs, and static sensors. The message flow corresponds to the several control and sensing

layers within IMC:

 Mission control messages define the specification of a mission and its life-cycle, for the

interface between a CCU (Command and Control Unit) such as a Neptus console and a

mission supervisor module. A mission is a sequence or graph of maneuvers.

 Vehicle control messages are used to interface the vehicle from an external source,

typically a CCU or a mission supervisor module, for example to issue maneuver

commands or other external requests, and to monitor the vehicle's state.

 Maneuver messages are used to define maneuvers, associated commands and execution

state. The simplest maneuver types are related to waypoint tracking and loitering patterns.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

118

 Guidance messages are related to the guidance used for autonomous maneuvering.

Usually a guidance step generates new reference measures for the vehicle's heading,

depth, and velocity, in the form of a Desired Guidance message.

 Navigation messages define the interface for reporting a vehicle’s navigation state. The

Estimated State message defines a vehicle's navigational state by the SNAME

convention.

 Sensing messages are used to report sensor readings by the respective hardware

controllers.

 Actuation messages specify the interface with hardware actuator controllers, such as fins

and thrusters.

DUNE

DUNE provides an operating-system and architecture independent C++ programming

environment for writing efficient and modular real-time reactive tasks. Besides running on-board

in several different types of autonomous vehicles (e.g., AUVs, UAVs, and ASVs), DUNE is also

the controlling software of communication gateways.

DUNE uses the publish/subscribe pattern to provide loose coupling between modules, which in

DUNE are called tasks. DUNE tasks publish and subscribe messages without knowing any

details about the other tasks. Effectively, message passing is the only mechanism available to

exchange information between tasks. For example, a task that interacts with a sensor produces a

message of a given type with a sensor reading (e.g., acceleration), that can later be consumed by

another task which integrates that information and produces a state estimate (e.g., estimated

position), another task can consume that estimate and produce commands to actuators (e.g.,

increase thrust). Figure 39 illustrates this concept.

Figure 39 - Dune Tasks for communication between modules

 D4.1 - High Level Design and Specification of RAWFIE Architecture

119

This modularity and loose coupling between tasks facilitates incorporating new sensors and

functionalities without developing new code. In most cases a simple configuration change is

enough to support new functionality. This fact eases not only the life of the everyday developer,

but also of new, or temporary developers that will only be working with some specific module of

the software, being shielded from the complexity of the remaining tasks of the framework.

Communication between tasks is made exclusively using IMC messages. A task in DUNE may

be used by one or more vehicles, for example, the same navigation task is used in all MST’s

vehicles. That is possible due to the ability to define a set of parameters in a configuration file,

without the need to recompile code. DUNE has one configuration file for each vehicle it

supports. This same file is used in real-vehicles and in simulated/emulated instances. DUNE uses

the concept of profiles to selectively enable or disable tasks from running. For example when

DUNE is started with the pure simulation profile, all tasks that interact with real sensors and

actuators are replaced by analogous simulation tasks. Hardware-in-the-loop simulation can be

achieved using the same method.

Neptus

Neptus is a distributed command, control, analysis, and intelligence framework for operations

with autonomous vehicles and human operators. It supports all phases of the life-cycle of

autonomous vehicle's missions:

 World representation

 Planning

 Execution

 Monitoring

 Post-mission review and analysis

 D4.1 - High Level Design and Specification of RAWFIE Architecture

120

Figure 40: Neptus mission planner interface

Neptus supports controlling and monitoring multiple vehicles in a single computer screen, and

allows the operator to design graphically any kind of mission supported by IMC enabled

autonomous vehicles. An illustration of Neptus’ main planning interface is shown in Figure 40.

One important tool provided by Neptus is the Mission Review and Analysis (MRA) program.

This tool allows users and developers to process, analyze, and transform data files collected by

vehicles during missions, using a sophisticated graphical user interface. With this program the

user can replay missions, visualize collected data in predefined plots, tables, and 3D maps, and

create dynamic plots of sensor measurements.

Figure 41 – MRA visualizations

 D4.1 - High Level Design and Specification of RAWFIE Architecture

121

In the RAWFIE project MST will draw from its experience in integrating the LSTS toolchain

with third-party protocols and will develop a new software module to translate IMC messages

to/from the RAWFIE protocols and a DUNE task that implements the required flow control

logic.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

122

References

 http://www.fed4fire.eu/ [1]

 http://groups.geni.net/geni/wiki/GeniDesign [2]

 http://relyonit.eu/ [3]

 IoT Lab-Project deliverable „D3.1 Open Interfaces” [4]

 http://www.iotlab.eu/ [5]

 http://www.wisebed.eu/ [6]

 http://www.fed4fire.eu/omf6/ [7]

 http://groups.geni.net/geni/wiki/GEC18Agenda/LabWikiAndOEDL/Introduction [8]

 http://nam.ece.upatras.gr/fstoolkit/trac/wiki/TheOfficeModel [9]

 http://www.ict-openlab.eu/technologies/control-plane.html [10]

 http://ipac.di.uoa.gr/ [11]

 http://eclipse.org/Xtext/ [12]

 http://polos.di.uoa.gr/ [13]

 http://www.project-makesense.eu/ [14]

 http://www.contiki-os.org/ [15]

 https://wiki.oasis-open.org/security/FrontPage [16]

 http://openid.net/ [17]

 http://oauth.net/ [18]

 http://openid.net/connect/ [19]

 http://web.mit.edu/kerberos/ [20]

 X.509 version 3: http://tools.ietf.org/html/rfc5280http://tools.ietf.org/html/rfc5280 [21]

 AIR COMBAT COMMAND CONCEPT OF OPERATIONS FOR ENDURANCE [22]

UNMANNED AERIAL VEHICLES 3 Dec 1996 - Version 2, SECTION 6 -

COMMUNICATION INTEGRATION AND INTEROPERABILITY

http://fas.org/irp/doddir/usaf/conops_uav/part06.htm

 UAV Communications & Data Links Sample, UAV Executive Certificate Course, [23]

UnmannedUniversity.

 http://www.smartfile.com/blog/the-differences-between-iaas-saas-and-paas/ [24]

 https://omf.mytestbed.net/projects/omf6/wiki/OEDLOMF6 [25]

 https://mytestbed.net/projects/oml [26]

 Wiselib - https://github.com/ibr-alg/wiselib/wiki [27]

 Shawn WSN - simulator https://github.com/itm/shawn/wiki [28]

 Testbed Runtime (TR) - https://github.com/itm/testbed-runtime/wiki [29]

 WISEBED SOAP API - http://wisebed.eu/#docs_soap [30]

 WISEBED REST API - http://wisebed.eu/#docs_rest [31]

 WISEBED JavaScript Client library - https://github.com/wisebed/wisebed.js [32]

 WISEBED JavaScript experimentation scripts and CLI - [33]

https://github.com/wisebed/wisebed.js-scripts

 GraphML format - http://graphml.graphdrawing.org/ [34]

http://www.fed4fire.eu/
http://groups.geni.net/geni/wiki/GeniDesign
http://relyonit.eu/
http://www.iotlab.eu/
http://www.wisebed.eu/
http://www.fed4fire.eu/omf6/
http://groups.geni.net/geni/wiki/GEC18Agenda/LabWikiAndOEDL/Introduction
http://nam.ece.upatras.gr/fstoolkit/trac/wiki/TheOfficeModel
http://www.ict-openlab.eu/technologies/control-plane.html
http://ipac.di.uoa.gr/
http://eclipse.org/Xtext/
http://polos.di.uoa.gr/
http://www.project-makesense.eu/
http://www.contiki-os.org/
https://wiki.oasis-open.org/security/FrontPage
http://openid.net/
http://oauth.net/
http://openid.net/connect/
http://web.mit.edu/kerberos/
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://fas.org/irp/doddir/usaf/conops_uav/part06.htm
http://www.smartfile.com/blog/the-differences-between-iaas-saas-and-paas/
https://omf.mytestbed.net/projects/omf6/wiki/OEDLOMF6
https://mytestbed.net/projects/oml
https://github.com/ibr-alg/wiselib/wiki
https://github.com/itm/shawn/wiki
https://github.com/itm/testbed-runtime/wiki
http://wisebed.eu/#docs_soap
http://wisebed.eu/#docs_rest
https://github.com/wisebed/wisebed.js
https://github.com/wisebed/wisebed.js-scripts
http://graphml.graphdrawing.org/

 D4.1 - High Level Design and Specification of RAWFIE Architecture

123

 WISEBED Virtual Machine - http://wisebed.eu/#appdev_vm [35]

 GENI Aggregate Manager [36]

http://groups.geni.net/geni/wiki/GAPI_AM_API_V3http://groups.geni.net/geni/wiki/G

API_AM_API_V3

 OMF Framework: http://mytestbed.net/projects/omf/ [37]

 OML Framework: https://oml.mytestbed.net/projects/oml/wiki/ [38]

 Zabbix: http://www.zabbix.com/ [39]

 Nagios: http://www.nagios.org/ [40]

 TopHat: http://trac.top-hat.info/wiki/manifold [41]

 https://tools.ietf.org/html/rfc7252 [42]

 http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html [43]

 http://www.ipso-alliance.org/wp-content/media/draft-ipso-app-framework-04.pdf [44]

 https://tools.ietf.org/html/rfc5988 [45]

 https://tools.ietf.org/html/rfc6690 [46]

 Nguyen, P.-H., Jung, Y.-C., Control of autonomous underwater vehicles using [47]

adaptive neural network: Decoupled control of heading, depth, and velocity, ATC

2009 - Proceedings of the 2009 International Conference on Advanced Technologies

for Communications , art. no. 5349385, pp. 133-136, 2009

 Peng, P.-F., Liu, Z., An independent ups and downs control method of underwater [48]

submersible vehicle based on adaptive fuzzy control, International Conference on

Intelligent Human-Machine Systems and Cybernetics, IHMSC 2009 1, art. no.

5336166, pp. 292-295, 2009.

 www.sfly.org [49]

 www.noptilus-fp7.eu [50]

 A. Ch. Kapoutsis, G. Salavasidis, S. A. Chatzichristofis, J. Braga, J. Pinto, J. B. Sousa, [51]

Elias B. Kosmatopoulos, “THE NOPTILUS PROJECT OVERVIEW: A FULLY-

AUTONOMOUS NAVIGATION SYSTEM OF TEAMS OF AUVS FOR

STATIC/DYNAMIC UNDERWATER MAP CONSTRUCTION”, «IFAC Workshop

on Navigation, Guidance and Control of Underwater Vehicles (NGCUV’2015)», April

28-30 2015, Girona – Catalonia (Spain), 2015.

 http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs [52]

 http://en.wikipedia.org/wiki/Service_Location_Protocol\ [53]

 Apache ActiveMQ Message Broker - http://activemq.apache.org/ [54]

 STOMP (Simple Text Oriented Message Protocol) - http://stomp.github.io/ [55]

 AMQP (Advanced Message Queuing Protocol) - https://www.oasis-[56]

open.org/committees/tc_home.php?wg_abbrev=amqp

 MQTT (Message Queuing Telemetry Transport) - http://mqtt.org/ [57]

 MQTT standard by OASIS - https://www.oasis-[58]

open.org/committees/tc_home.php?wg_abbrev=mqtt

 RabbitMQ - https://www.rabbitmq.com/ [59]

http://wisebed.eu/#appdev_vm
http://groups.geni.net/geni/wiki/GAPI_AM_API_V3
http://groups.geni.net/geni/wiki/GAPI_AM_API_V3
http://groups.geni.net/geni/wiki/GAPI_AM_API_V3
http://mytestbed.net/projects/omf/
https://oml.mytestbed.net/projects/oml/wiki/
http://www.zabbix.com/
http://www.nagios.org/
http://trac.top-hat.info/wiki/manifold
https://tools.ietf.org/html/rfc7252
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://www.ipso-alliance.org/wp-content/media/draft-ipso-app-framework-04.pdf
http://activemq.apache.org/
http://stomp.github.io/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
http://mqtt.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.rabbitmq.com/

 D4.1 - High Level Design and Specification of RAWFIE Architecture

124

 Apache Kafka - http://kafka.apache.org/ [60]

 MQTT-SN - http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-[61]

SN_spec_v1.2.pdf

 Raj Jain, Fred L. Templin, Yin, Kwong-Sang, Wireless Datalink for Unmanned [62]

Aircraft Systems: Requirements, Challenges and Design Ideas, 2011,

DOI:10.2514/6.2011-1426

 Johansen, Tor Arne; Zolich, A.; Hansen, T.; Sørensen, Asgeir J. Unmanned Aerial [63]

Vehicle as Communication Relay for Autonomous Underwater Vehicle – Field Tests,

IEEE Globecom Workshop – Wireless Networking and Control for Unmanned

Autonomous Vehicles, Austin, TX, 2014, NTNU

 Tony Stentz, Alonzo Kelly, Herman Herman, Peter Rander, Omead Amidi, and Robert [64]

Mandelbaum, Integrated Air/Ground Vehicle System for Semi-Autonomous Off-Road

Navigation, AUVSI Symposium, July 10, 2002

 Jennifer Carlson and Robin R. Murphy, How UGVs Physically Fail in the Field, IEEE [65]

TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 3, pp 423-437, JUNE 2005

 Narek Pezeshkian, Hoa G. Nguyen, and Aaron Burmeister, UNMANNED GROUND [66]

VEHICLE NON-LINE-OF-SIGHT OPERATIONS USING RELAYING RADIOS,

Proceedings of the 12th IASTED International Conference Robotics & Applications,

August 14-16, 2006 Honolulu, Hawaii

 http://fp7-sunrise.eu/ [67]

 http://wiki.ros.org/rosbridge_suite [68]

 http://spark.apache.org/ [69]

 www.mlbase.org [70]

 http://aws.amazon.com/rds/ [71]

 http://aws.amazon.com/ec2/ [72]

 http://confluent.io/docs/current/avro.html [73]

 https://zookeeper.apache.org/doc/trunk/zookeeperOver.html [74]

 http://confluent.io/docs/current/camus/docs/intro.html#key-features [75]

 http://hadoop.apache.org/ [76]

 https://github.com/RobotnikAutomation/summit_xl_sim [77]

 https://github.com/yujinrobot/kobuki [78]

 Reference Model for Service Oriented Architecture 1.0,Committee Specification 1, 2 [79]

August 2006 – URL http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=soa-rm

 WSDL version 2.0 - http://www.w3.org/TR/wsdl20/ [80]

 SOAP version 1.2 - http://www.w3.org/TR/soap/ [81]

 Jay Kreps, Kafka:Neha Narkhede, Jun Rao: A Distributed Messaging System for Log [82]

Processing, LinkedIn & Microsoft Research

 http://confuent.io [83]

 eBay Cloud CMS based NoSQL Presentation from China SoftCon 2011 [84]

http://kafka.apache.org/
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://fp7-sunrise.eu/
http://wiki.ros.org/rosbridge_suite
http://spark.apache.org/
http://www.mlbase.org/
http://aws.amazon.com/rds/
http://aws.amazon.com/ec2/
http://confluent.io/docs/current/avro.html
https://zookeeper.apache.org/doc/trunk/zookeeperOver.html
http://confluent.io/docs/current/camus/docs/intro.html#key-features
http://hadoop.apache.org/
https://github.com/RobotnikAutomation/summit_xl_sim
https://github.com/yujinrobot/kobuki
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/soap/
http://confuent.io/

