
 D4.8 - Design and Specification of RAWFIE Components (c)

1

Road-, Air- and Water-based Future Internet
Experimentation
Project Acronym: RAWFIE

Contract Number:

645220

Starting date: Jan 1st 2015 Ending date: Dec 31st 2018

Deliverable Number and

Title
D4.8 - Design and Specification of RAWFIE Components(c)

Confidentiality PU Deliverable type1 R
Deliverable File D4.8 Date 30.06.2017

Approval Status2 1st and 2nd Reviewer, WP
Leader

Version 1.0

Giovanni Tusa Organization IES Solutions

Phone +39 095211640 E-Mail g.tusa@iessolutions.eu

1 Deliverable type: P(Prototype), R (Report), O (Other)
2 Approval Status: WP leader, 1st Reviewer, 2nd Reviewer, Advisory Board

 D4.8 - Design and Specification of RAWFIE Components (c)

2

AUTHORS TABLE
Name Company E-Mail

Giovanni Tusa IES g.tusa@iessolutions.eu

Marcel Heckel Fraunhofer marcel.heckel@ivi.fraunhofer.de

Nikolaos Priggouris HAI PRIGGOURIS.Nikolaos@haicorp.com

Kiriakos Georgouleas HAI Georgouleas.Kiriakos@haicorp.com

Vasil Kumanov Aberon vasil.kumanov@aberon.bg

Ricardo Martins MST rasm@oceanscan-mst.com

Damien Piguet CSEM damien.piguet@csem.ch

Philippe Dallemagne CSEM pda@csem.ch

Kostas Kolomvatsos UoA kostasks@di.uoa.gr

Kakia Panagidi UoA kakiap@di.uoa.gr

Lionel Blondè HES-SO lionel.blonde@hesge.ch

REVIEWERS TABLE
Name Company E-Mail

Kakia Panagidi UOA kakiap@di.uoa.gr

Kiriakos Georgouleas HAI Georgouleas.Kiriakos@haicorp.com

 D4.8 - Design and Specification of RAWFIE Components (c)

3

DISTRIBUTION
Name / Role Company Level of

confidentiality3
Type of deliverable

ALL PU R

CHANGE HISTORY
Version Date Reason for Change Pages/Sections

Affected
0.1 2017-05-15 Start discussions and preparation of the 3rd version

of the components design (IES internal)
all

0.2 2017-05-29 TOC / Initial version of contents all

0.3 2017-06-05 First contributions Section 4.2 (design of components)

0.4 2017-06-16 Updates to the components’ functions and interfaces
specifications

Sections 4.1, 4.2, 4.3

0.5 2017-06-27 Updates to the components’ functions and interfaces
specifications. First internal review round.

Section 4

0.6 2017-06-30 Updates to the components’ functions and interfaces
specifications. Updates to the global sequence
diagrams

Section 4, 5

0.7 2017-07-03 Updates to Section 3. Updates to the components’
functions and interfaces specifications. Updates to
the global sequence diagrams. New section about
security approaches. Ready for review

Section 1, 2, 3, 4, 5, 6

0.8 2017-07-06 Review completed All

1.0 2017-07-10 Final All

3 Deliverable Distribution: PU (Public, can be distributed to everyone), CO (Confidential, for use by consortium
members only), RE (Restricted, available to a group specified by the Project Advisory Board).

 D4.8 - Design and Specification of RAWFIE Components (c)

4

Abstract:
As a result of the progresses on tasks T4.2, T4.3 and T4.4, the final version of the Design and Specification of RAWFIE
Components deliverable, for the 3rd technical iteration cycle, is released.

Built on the final updated list of architectural components and technological decisions presented in the D4.7, on the 2nd

iteration of components’ implementation and on the updated requirements’ definition of D3.3, this report presents the
final modifications to the design, and the interfaces specifications of RAWFIE platform and components.

Keywords:
design, architecture, component, interfaces, workflows, interactions, interfaces, diagrams, methods, classes, deployment,
server, scenarios, physical architecture

 D4.8 - Design and Specification of RAWFIE Components (c)

5

Part II: Table of Contents-
Part II: Table of Contents- .. 5	

List of Figures ... 9	
List of Tables ... 11	

Part III: Executive Summary .. 12	
Part IV: Main Section ... 13	
1	 Introduction ... 13	

1.1	 Scope of D4.8 ... 13	
1.2	 Relation to other deliverables ... 13	

2	 Overview of changes for the third iteration of the design and specifications of RAWFIE
components ... 13	
3	 Final deployment of the RAWFIE platform .. 14	

3.1	 Deploy and configuration of the Apache Kafka message bus cluster 15	
4	 Updates on the design and specification of the software components – 3nd iteration 17	

4.1	 Frontend Tier (Web Portal GUI elements) ... 17	
4.1.1	 Overview ... 17	
4.1.2	 Wiki Tool .. 17	
4.1.3	 Resource Explorer Tool .. 18	
4.1.4	 Booking Tool .. 20	
4.1.5	 Experiment Authoring Tool .. 24	
4.1.6	 Experiment Monitoring Tool .. 26	
4.1.7	 System Monitoring Tool ... 28	
4.1.8	 UxV Navigation Tool ... 30	
4.1.9	 Visualisation Tool ... 31	
4.1.10	 Data Analysis Tool ... 34	

4.2	 Middle Tier (Services and Communication components) .. 36	
4.2.1	 Overview ... 36	
4.2.2	 Testbed Directory Service ... 38	
4.2.3	 EDL Compiler and Validator .. 44	
4.2.4	 Experiment Validation Service ... 46	
4.2.5	 Users & Rights Service ... 47	
4.2.6	 Booking Service .. 53	
4.2.7	 Launching Service .. 59	
4.2.8	 Visualisation Engine ... 63	
4.2.9	 Data Analysis Engine .. 65	

 D4.8 - Design and Specification of RAWFIE Components (c)

6

4.2.10	 System Monitoring Service ... 65	
4.2.11	 Accounting Service ... 67	
4.2.12	 Experiment Controller .. 71	

4.3	 Testbed Tier (Testbeds and Resources control components) ... 75	
4.3.1	 Overview ... 75	
4.3.2	 Monitoring Manager ... 76	
4.3.3	 Network Controller ... 80	
4.3.4	 Resource Controller .. 83	
4.3.5	 UxV Proximity component ... 87	
4.3.6	 Testbed Manager ... 91	
4.3.7	 SFA Aggregate Manager .. 94	
4.3.8	 UxV Node ... 103	

5	 Global Sequence diagrams showing main RAWFIE processes .. 108	
5.1	 Registration of Testbed Resources ... 108	
5.2	 Booking Testbed Resources ... 111	
5.3	 System Monitoring ... 113	
5.4	 Experiment Execution and Monitoring .. 113	
5.5	 Experiment Measurements Recording ... 115	
5.6	 Authoring and Launching of an Experiment .. 117	
5.7	 Data Analysis ... 119	

6	 Security considerations .. 122	
6.1	 Network topology ... 122	
6.2	 Internal communication, encryption and authentication .. 123	
6.3	 Message bus access .. 125	

7	 Summary and Outlook ... 125	
8	 References ... 127	
9	 Annex ... 127	

9.1	 Detailed description of the API provided by RAWFIE components 127	
9.1.1	 Testbed Directory Service ... 127	
9.1.2	 System Monitoring Service ... 134	
9.1.3	 User & Rights Service .. 135	
9.1.4	 Booking (Reservation) Service ... 146	
9.1.5	 Launching Service .. 149	

9.2	 Abbreviations ... 151	

 D4.8 - Design and Specification of RAWFIE Components (c)

7

9.3	 Glossary .. 153	
A .. 153	

Accounting Service .. 153	
Aggregate Manager ... 153	
Avro ... 154	

B .. 154	
Booking Service .. 154	
Booking Tool ... 154	

C .. 154	
Common Testbed Interface ... 154	
Component ... 154	

D .. 154	
Data Analysis Engine .. 154	
Data Analysis Tool .. 154	

E .. 154	
EDL Compiler & Validator ... 155	
Experiment Authoring Tool ... 155	
Experiment Controller ... 155	
Experiment Monitoring Tool ... 155	
Experiment Validation Service .. 155	

M ... 155	
Master Data Repository ... 155	
Measurements Repository ... 155	
Message Bus .. 155	
Module ... 155	
Monitoring Manager .. 156	

N .. 156	
Network Controller .. 156	

L .. 156	
Launching Service ... 156	

R .. 156	
Resource Controller ... 156	
Resource Explorer Tool ... 156	
Results Repository ... 156	

 D4.8 - Design and Specification of RAWFIE Components (c)

8

Resource Specification (RSpec) .. 156	
S ... 156	

Schema Registry .. 156	
Service ... 157	
Slice Federation Architecture (SFA) ... 157	
Subsystem .. 157	
System ... 157	
System Monitoring Service ... 157	
System Monitoring Tool .. 157	

T .. 157	
Testbed ... 157	
Testbeds Directory Service .. 157	
Testbed Manager ... 158	
Tool .. 158	

U .. 158	
Users & Rights Repository .. 158	
Users & Rights Service .. 158	
UxV ... 158	
UxV Navigation Tool .. 158	
UxV node ... 158	

V .. 158	
Visualisation Engine .. 158	
Visualisation Tool .. 159	

W ... 159	
Web Portal ... 159	
Wiki Tool ... 159	

 D4.8 - Design and Specification of RAWFIE Components (c)

9

List of Figures
Figure 1: Deployment and configuration of RAWFIE Message bus .. 16	
Figure 2: Web Portal – Deployment / Components Diagram .. 17	
Figure 3: Resource Explorer Tool - Class diagram .. 19	
Figure 4: Booking Tool - Class diagram ... 23	
Figure 5: Class diagram of the Authoring Tool .. 26	
Figure 6: Experiment Monitoring Tool - Class diagram .. 27	
Figure 7: System Monitoring Tool - Class diagram ... 29	
Figure 8: UxV Navigation Tool - Class diagram .. 31	
Figure 9: Visualisation Tool - Class diagram ... 33	
Figure 10: Middle Tier Components – Deployment / Components Diagram 37	
Figure 11: Testbed Directory Service class diagram .. 40	
Figure 12: Experimenter search resources of specific type (USV) ... 42	
Figure 13: Platform admin registers a new Testbed .. 43	
Figure 14: Register a new UxV resource .. 44	
Figure 15: Class diagram for the ECV .. 45	
Figure 16: Class diagram for the EVS .. 47	
Figure 17: Users & Rights Service - Class diagram ... 49	
Figure 18: Users & Rights Service – Password-based user login ... 50	
Figure 19: Users & Rights Service – Check user authorisation .. 51	
Figure 20: Users & Rights Service – Check user authorisation .. 53	
Figure 21: Booking Service - Class diagram .. 56	
Figure 22: Booking Service - Overview ... 57	
Figure 23: Booking Service – Add/Edit a booking ... 58	
Figure 24: Class diagram of the Launching Service ... 62	
Figure 25: Visualisation Engine - Class diagram ... 64	
Figure 26: System Monitoring Service - Class diagram ... 67	
Figure 27: Accounting Service – Class diagram ... 69	
Figure 28: Accounting Service – Register usage information .. 70	
Figure 29: Accounting Service – Register external payment ... 70	
Figure 30: Accounting Service – Payment via payment system ... 71	
Figure 31 Experiment Controller - Class Diagram ... 73	
Figure 32 Experiment Controller - Sequence diagram ... 74	
Figure 33: Testbed control, analysis and monitoring– Deployment / Components Diagram 75	
Figure 34: Monitoring Manager - Class diagram ... 78	
Figure 35: Monitoring Manager sent and received Message Bus messages 79	
Figure 36 Resource Controller - Class Diagram ... 85	
Figure 37 - Resource Controller - Sequence diagram ... 86	
Figure 38: UxV Node architecure with Proximity component. Dotted line boxes represent
hardware. Continuous line boxes represent software components. .. 89	
Figure 39: Testbed Manager - Class diagram ... 93	
Figure 40: Testbed Manager - Experiment handling sequence diagram 94	
Figure 41: Aggregate Manager architectural components .. 96	
Figure 42: Aggregate Manager - Get SFA-API version sequence diagram 98	
Figure 43: Aggregate Manager - retrieve resources information using REST-API sequence
diagram ... 99	

 D4.8 - Design and Specification of RAWFIE Components (c)

10

Figure 44: Aggregate Manager - retrieve resources information using XML-RPC API sequence
diagram ... 99	
Figure 45: Aggregate Manager - allocation of resources through REST API 100	
Figure 46: Aggregate Manager - allocation of resources through XML-RPC API 101	
Figure 47: Aggregate Manager - create resource sequence diagram .. 102	
Figure 48: Aggregate Manager - update resource sequence diagram ... 102	
Figure 49: Aggregate Manager - retrieve resource sequence diagram 103	
Figure 50: Sequence Diagram of "Registration of Testbed Resources" proces 110	
Figure 51: Sequence Diagram for “Booking Testbed Resources” process 112	
Figure 52: Sequence Diagram for “Experiment Execution and Monitoring” process 114	
Figure 53: Sequence Diagram for “Experiment Measurements Recording” process 116	
Figure 54: Sequence diagram for “Authoring and Launching of an Experiment” 118	
Figure 55: Sequence Diagram for the “Data Analysis in a streaming scenario” process 120	
Figure 56: Sequence Diagram for the “Data Analysis in a batch scenario” process 121	
Figure 57: Network topology .. 122	
Figure 58: Simplified diagram for TLS handshake with server and client certificate 124	

 D4.8 - Design and Specification of RAWFIE Components (c)

11

List of Tables
Table 1: net_interfaces testbed manager table .. 81	
Table 2: resources_net_interfaces table of the testbed manager data base 81	
Table 3: 2nd iteration dynamic data with topic names ... 82	
Table 4: List of requirements for an UxV node to be used in RAWFIE 108	
Table 5: REST methods description for the Testbed Directory Service 127	

 D4.8 - Design and Specification of RAWFIE Components (c)

12

Part III: Executive Summary
The present document provides the 3rd and final version of the RAWFIE platform and
components design and specification. As such, it is delivered at the beginning of the 3rd
RAWFIE iteration cycle.
The report starts with some updates about the final deployment of the RAWFIE operational
platform from a physical point of view. Among the other information, including information
about the installation of RAWFIE components in several servers (namely the Web Application
Server instances, the Middle Tier Services Server and System Monitoring Services Server
instances, the GIS Server instances, the Master Data, Users & Rights Repositories,
Measurements Repository and Analysis Results Repository Server instances, the Testbed
Components server instances and the UxV Node Server (normally, the embedded server onboard
of each UxV node)), we report in a dedicated sub-section, the last deployment and configuration
principle for the Apache Kafka message bus. Each Testbed connected to RAWFIE is going to
have its own Kafka Broker (and a corresponding second instance for replication and fault
tolerance), that will handle, locally, the communication between its own UxVs and the Testbed
components themselves. The “centralised” set of Kafka brokers will still be present at the
platform level (currently deployed at UoA premises): the messages exchanged for the local
communication on each Testbed will be mirrored in the centralised installation.
Basically the design of all components at the different application tiers ha been updated before
starting the 3rd implementation iteration, by either adding or by modifying functionalities and
software interfaces specifications. These updates are reported in Section 4 and its sub-sections,
where it is also reported how the several components of the platform will be integrated and
connected together in the final platform implementation, showing specific workflows through
UML sequence diagrams. In the same sections we highlight, for each component and using a
specific table template, how the requirements from D3.3 are mapped to software functionalities
and / or software interfaces specifications.
The purpose of the adopted design and specification approach is twofold: to present and define
how the final functionalities expected for the new development cycle iteration – based on what
has been defined in the latest requirements’ specification document (D3.3) - will be
implemented, and to observe in depth the data flow and interaction between the components
specified in the deliverable D4.7.
This final RAWFIE architecture and components’ design document ends with a set of UML
sequence diagrams, which are again slightly updated with respect to the same diagrams in D4.5,
based on the new design modifications. These sequence diagrams – the so called “Global
Sequence Diagrams”, show how the different software components interact and how the
software interfaces are used, in some of the most relevant RAWFIE processes / use cases.

 D4.8 - Design and Specification of RAWFIE Components (c)

13

Part IV: Main Section

1 Introduction
1.1 Scope of D4.8

This deliverable describes the final software and physical design of the components belonging to
the RAWFIE platform architecture. It presents the concepts for the setup of the physical
infrastructure of the platform, the approach for the deployment of the several applications and
components by the mean of UML Deployment and components diagrams, and the software
classes implementing the required functionalities for each component, starting from the updated
list of requirements provided in WP3 (D3.3).

Practically it answers:

• How the requirements defined in D3.3 are translated into software design and in turn into
implemented functionalities

• Overall understanding of the operational architecture (physical infrastructure,
components’ deployment in different servers and execution environments)

• Detailed, development oriented software design of components
• Components interfaces and interactions in some of the most relevant RAWFIE processes

or use cases (using sequence diagrams)

1.2 Relation to other deliverables
The 3rd and final iteration of the design and specifications of RAWFIE components in D4.8, is
elaborated based on the requirements specification presented in D3.3 – Specification of
requirements for the 3rd and final RAWFIE development cycle. The final version of the high
level architecture presented in D4.7 provides an input for this deliverable as a general
architectural picture, where relations among components is firstly highlighted. The work in this
deliverable takes also into account the outcome of 2nd iteration development activities in WP5,
and will guide the work for the 3rd iteration development period which will be reported in future
WP5 deliverables.

2 Overview of changes for the third iteration of the design and
specifications of RAWFIE components

Below we shortly summarise the most important changes made in comparison to D4.5:

• Physical deployment (Section 3) updated with more information on the current setup of
the Message Bus cluster

• Deployment diagrams in Sections 4.1.1, 4.2.1 and 4.3.1, updated
• Updated link of components’ functionalities with the updated list of requirements from

D3.3, for each component in Section 4

 D4.8 - Design and Specification of RAWFIE Components (c)

14

• Changes to almost all components design to reflect final design of functionalities and
interfaces, with updated class and sequence diagrams, always in chapter 4

• Besides the existing components’ updates, the following modifications can be
highlighted:

o Accounting Service definition updated (KillBill integration etc.)
o Users & Rights Service interface updated
o In the Testbed Tier, Monitoring Manager is moved inside Testbed Manager and is

considered a subcomponent of it sharing the same user interface
• Global sequence diagrams, highlighting some of the most relevant RAWFIE processes /

use cases updated in Section 5

3 Final deployment of the RAWFIE platform
The physical elements listed in the following contribute to the RAWFIE physical architecture.
All these elements are detailed using UML Deployment diagrams in the subsequent sections of
the document.

• Web Application Server
The server instance/s and the environment where all RAWFIE Frontend tier applications
run. Includes a Java Runtime Environment (JRE), and the Apache Tomcat Servlet
Container, where the Web Portal components framework is deployed.

• Middle Tier Services Server
The server instance/s and the environment where all RAWFIE Middle Tier services run.
Include a Java Runtime Environment (JRE), and the Apache Tomcat Servlet Container,
where the components are deployed.

• Integration Server
The server / server instances where the Confluent platform and the Message Bus cluster
are deployed. Include a Java Runtime Environment (JRE).

• GIS Server
The server / server instances where the GIS solutions adopted in RAWFIE (Geoserver
cluster) is deployed. It may include a local PostgreSQL / PostGIS database or will use the
Master Data Repository one, as datasource for storing and serving geographic data as
layers.

• Master Data Repository Server
The server / server instances where the PostgreSQL / PostGIS RAWFIE database is
deployed, together with the LDAP directory (OpenDJ [1]).

• Measurements and Analysis Repositories Server
The server / server instances where the Measurements and Analysis Repositories will be
deployed.

• System Monitoring Server
The server / server instances where the System Monitoring Services and applications run
(Icinga Web GUI [2], monitoring DB, JNRPE [3] plugin and System Monitoring
Service).

 D4.8 - Design and Specification of RAWFIE Components (c)

15

• Testbed Server/s
Testbed services/components will run on their dedicated HW located at the various
remote testbed facilities. Most of the testbed services are expected to run as standalone
processes. Components of the Testbed Server/s also include local installation of Apache
Kafka brokers, for handling the communication between the connected UxVs and the
specific Testbed internal components (Testbed Manager, Resource Controller, and so on).

3.1 Deploy and configuration of the Apache Kafka message bus cluster
Apache Kafka has been chosen for implementing the message bus and as serialization format of
the messages on the bus under the concept of “Multiple Nodes- Multiple brokers clusters”
instance. A local Message Bus (message broker) is installed within each Testbed. This way, the
internal communication between the components in the testbed and the UxVs, e.g. the Resource
Controller and the UxVs is be performed in a local, controlled network environment, thus
reducing the impact of the network in the latency of the communication. The overall workload in
the message bus is reduced (since each broker will just handle its own messages), and the local
message bus system are adjusted to the needs of the Testbed itself. Messages from each local
broker are mirrored to a centralized Kafka broker deployed in the Cloud, so that Middle Tier
components which need to access specific messages (e.g. logs or other data for experiments’
control) can directly access the central message broker rather than each of the local ones, as
depicted in Figure 1.
The use of different partitions is selected for the different UxVs in the same Testbed; this ensures
that the messages of the various UxVs do not intermix, and it provides much shorter message bus
queues dedicated to a particular UxV and much faster response times. A key is attached to each
message in which the producer guarantees that all messages with the same key will arrive to the
same partition. A topic partition is the unit of parallelism in Kafka.
To overcome the case of repartitioning in case of new testbeds, topics are created with a different
name per testbed (i.e prefixing the <testbed_id>_ in each case) only for the messages related
with the control of devices. Every testbed broker handles topics different from the others and all
the topics are mirrored in the main cluster for redundancy purposes. The UxVs need to consider
the testbed identifier in order to know where to send or from where to receive in each case (this
can be part of their initial configuration when deployed in a testbed). Partitions of topics in other
testbeds is not affected by adding or removing devices or even a whole testbed.

 D4.8 - Design and Specification of RAWFIE Components (c)

16

Figure 1: Deployment and configuration of RAWFIE Message bus

 D4.8 - Design and Specification of RAWFIE Components (c)

17

4 Updates on the design and specification of the software
components – 3nd iteration

4.1 Frontend Tier (Web Portal GUI elements)

4.1.1 Overview
The UML Deployment Diagram of Web Portal components and their interactions with Middle
Tier and Data Tier components is presented in Figure 2.

Figure 2: Web Portal – Deployment / Components Diagram

4.1.2 Wiki Tool
All kinds of documentation and tutorials relating to the RAWFIE system will be managed by the
Wiki Tool.

 D4.8 - Design and Specification of RAWFIE Components (c)

18

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-WIK-001
(HIGH)

A tutorial or similar type
of documentation shall be
provided to the users of
the platform

The Wiki Tool will be used to manage all
manuals, documentation and other information
(e.g. extended descriptions of testbeds and
UxVs) about the RAWFIE system.

PT-WIK-002
(HIGH)

The Wiki shall use the
user credentials from the
User & Rights repository

The Wiki Tool will be configured to use the
LDAP interface of the User & Rights repository
for authentication.

PT-WIK-003
(MEDIUM)

The Wiki should support
internationalization and
localization

Wiki pages are provided in different languages.

PT-WIK-004 The Wiki should be easy
to use and edit

A WYSIWYG editor and full text search is
provided by the Wiki Tool

 Final specification of functionalities and interfaces
The third party application “XWiki” [5] is used to realise the Wiki Tool. Beside the
HTTP/HTML interface for displaying and editing, no special operations are foreseen.
Using the LDAP-Authenticator, the XWiki will access the User & Rights repository.
All tools in the Web Portal will provide hyperlinks to the wiki pages, that contain manuals or
other information about the tool.

4.1.3 Resource Explorer Tool
Via the Resource Explorer Tool, the experimenter can discover and select available testbeds as
well as resources inside a Testbed that she/he will utilize to build future experiments.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-REE-T-
001
(HIGH)

The UI interface shall
illustrate testbed and UxV
information of the
RAWFIE federation that
the experimenters should
take advantage of

The pages of the IndexPage, ResourcePage and
TestbedPage visualise the information

PT-REE-T-
002
(LOW)

Registration of testbeds
and UxVs may be possible
via the Web Portal

EditTestbed and EditResourcePage can be used
to add and edit testbeds and UxVs

PT-REE-T-
003
(MEDIUM)

RAWFIE platform should
provide a Resource
Discovery tool for fine-
grained resource searches

The SearchPage will provide a search form and
results list

 D4.8 - Design and Specification of RAWFIE Components (c)

19

PT-REE-T-
004
(MEDIUM)

Link to the Booking Tool
should be provided

ResourcePage will provide a link to the Booking
Tool, so that the current UxV can be booked.

 Final specification of functionalities and interfaces

The Resource Explorer Tool provides several web pages to interact with the Testbed Directory
Service. A search page is provided to let the user search for resources that meet his requirements.
Specific details of Testbeds and UxVs could be viewed on the details web pages. Adding and
editing of Testbeds and UxVs could be done via the edit web pages.

Figure 3: Resource Explorer Tool - Class diagram

The Resource Explorer Tool mainly interacts with the Testbed Directory Service. Please see the
section about the Testbed Directory Service for a more detailed description. Additionally, the
ResourcePageController can call the BookingTool to directly book the selected resources.

Provided Interfaces

• Web portal GUI:
Used by the Experimenters to find appropriate Testbeds and UxVs.

Required Interfaces

 D4.8 - Design and Specification of RAWFIE Components (c)

20

• Testbed Directory Service Interface:
Read the resource data for visualisation

• Booking Tool:
Redirect user (in the browser) to the booking tool, to start booking of the selected
resources

4.1.4 Booking Tool
The booking tool provides the front-end that allows a potential user/experimenter to reserve
resources to selected Testbeds for a specified period (slice) of time. Booking of resources by the
experimenter is a prerequisite in order to be able to assign them later on to an authored
experiment (experiment level reservation) and proceed with launching of the actual experiment.
In the following section and throughout this document, the terms booking and reservation should
be considered interchangeable.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-BOO-T-
001
(HIGH)

Booking Tool should
allow booking of resources
at the experimenter level
for a specified period and
for selected resources

Mapped by design (CalendarViewPage will
provide initial selection of time slices while
CreateBookingPage allows for selection of
resources (see also PT-BOO-T-004)

PT-BOO-T-
002
(HIGH)

Booking Tool
functionality shall be
compatible with the SFA
architecture and the notion
of slices reservations

Aggregate Manager Rest API is contacted during
every booking request
See also Booking Service section

PT-BOO-T-
003
(HIGH)

Booking Tool should
delegate all its actions
related to Booking of a
resource to the Booking
Service

Mapped By design (see class diagram)

PT-BOO-T-
004
(HIGH)

Booking Tool shall also
interact with the Testbeds
Directory Service in order
to retrieve information on
unallocated testbed
resources

Mapped by design (CreateBookingPage interacts
with Testbed Directory Service, see class
diagram)

PT-BOO-T-
005
(HIGH)

Booking Tool should
communicate with the
underline services using
JSON formatted messages
(through an RPC or REST
API)

Implementation specific (Booking Service will
provide an RPC & REST interface enabling
communication via Avro JSON messages)

PT-BOO-T- Booking Tool should Fulfilled by existence of CalendarViewPage

 D4.8 - Design and Specification of RAWFIE Components (c)

21

006
(HIGH)

provide appropriate
functionality for viewing
the reservations of a
user/experimenter

PT-BOO-T-
007
(HIGH)

Booking Tool should
allow editing of
Reservations defined in a
future time

Fulfilled by existence of EditBookingPage

PT-BOO-T-
008
(HIGH)

Booking Tool should
allow cancellation of
present and future defined
Reservations

Fulfilled by existence of CancelBookingPage

PT-BOO-T-
009
(HIGH)

Booking Tool should
allow creation of bookings
through an intuitive UI
interface

Fulfilled by existence of CreateBookingPage

PT-BOO-T-
010
(HIGH)

Appropriate notification
mechanism should be
provided to the user in
case status of reservation
request is not directly
available.

A booking (reservation) status field will be
included in every booking response message
which should be visible in the UI
(CalendarViewPage and/or
BookingDetailsPage)
See also Booking Service section

PT-BOO-T-
011
(MEDIUM)

Booking Tool may provide
assistance of feedback to
the potential experimenter
during the booking process

Email notifications are sent to the experimenter
when reservation status changes (i.e. approved or
rejected). Failure of booking provides also the
reason of failure.

PT-BOO-T-
014
(HIGH)

Booking Tool UI interface
should be protected with
appropriate authorization
and differentiate available
actions and view based on
user and its assigned role

Only authorized access is allowed. Certain
actions (Booking Approve or Reject) are
available only to users with a certain testbed
role. Edit of Booking is allowed only to the user
that created it.

PT-BOO-T-
015
(HIGH)

Booking Tool should be
integrated in the RAWFIE
web portal.

Integration in the RAWFIE web portal was
achieved during 2nd iteration integration
activities

PT-BOO-T-
016
(HIGH)

Booking Tool should limit
reservation of resources
during testbeds operational
hours

Operational hours integrated in the Database
schema (testbed table). The UI provides a
selection for the desired testbed and displays a
calendar view only for the operational hours.

PT-BOO-T-
017
(HIGH)

Booking Tool should
prohibit reservation of the
same resource by different
users at overlapping time

Booking Tool contacts Booking Service and
performs some validation checks prior to
booking approval.

 D4.8 - Design and Specification of RAWFIE Components (c)

22

periods

 Final specification of functionalities and interfaces
The Booking Tool acts as a front-end interface to the Booking Service and provides a set of
actions depending on the logged in user role (experimenter or testbed manager) as well as on the
reservation status of the booking at the time of the action. The Booking Tool is integrated in the
RAWFIE web portal and exposes a set of appropriate web pages that enable the following
functionalities:

• View bookings in Calendar View
• View booking details (per booking)
• Create booking
• Edit booking (by experimenter or testbed manager)
• Cancel booking (by experimenter or testbed manager)
• Approve booking (by testbed manager)
• Reject booking (by testbed manager)

In the class diagram that follows the changes compared to the previous version are marked with
red colour.

 D4.8 - Design and Specification of RAWFIE Components (c)

23

Figure 4: Booking Tool - Class diagram

Provided Interfaces
• Web portal GUI: Used by the Experimenter and/or Testbed Adminsitrotors/Operators

Required Interfaces
• Booking Service: Read the bookings for visualisation, add, edit, reject or aprove

bookings
• Testbed Directory Service: to retrieve not booked resources during initial selection for

creation of a new reservation

 Updated sequence diagrams
No separate sequence diagrams provided for Booking Tool. See section 4.2.6 (Booking Service)
below.

 D4.8 - Design and Specification of RAWFIE Components (c)

24

4.1.5 Experiment Authoring Tool
The Experiment Authoring Tool is responsible to provide functionalities to the experimenters
that are related to the definition of experiments by using the EDL. Two editors are provided: the
textual and the visual editors. These editors incorporate all the necessary functionalities as those
found in typical IDEs as well as functionalities related to the compilation and validation of the
defined experiments.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-EXA-T-
001
(High)

Experiment Description
Language (EDL) shall be
used as a language for the
definition of experiment
scenarios

The EDL model is already in place

PT-EXA-T-
002
(High)

The EDL should allow the
definition of all necessary
requirements for an
experiment

The EDL model offers the necessary
terminology

PT-EXA-T-
003
(Medium)

For each defined
experiment specific
metadata, i.e. name,
version, date and
description shall be
defined

The EDL model offers the necessary
terminology

PT-EXA-T-
004
(High)

An experimenter shall be
able to provide initial
conditions and/or
configuration parameters
for an experiment

The EDL model offers the necessary
terminology

PT-EXA-T-
005
(High)

An experimenter shall be
able to manage/guide the
available booked resources
during experiment
authoring

The EDL model offers the necessary
terminology

PT-EXA-T-
006
(Medium)

An experimenter shall be
able to define the type of
information to be gathered
and/or stored by UxV
resource(s)

The EDL model offers the necessary
terminology

PT-EXA-T-
007
(Medium)

An experimenter shall be
able to define the type of
metrics to be gathered
and/or stored during an

The EDL model will offer the necessary
terminology

 D4.8 - Design and Specification of RAWFIE Components (c)

25

experiment and/or per
UxV resource

PT-EXA-T-
008
(High)

An experimenter shall be
able to provide navigation
or movement directives
during experiment
authoring

The EDL model offers the necessary
terminology
The Textual editor also supports this
functionality

PT-EXA-T-
009
(High)

An experimenter should be
able to provide formation
information for a group of
UxVs resources

The EDL model offers the necessary
terminology
The Textual editor also supports this
functionality

PT-EXA-T-
010
(High)

A textual editor shall be
provided for the authoring
of RAWFIE experiments

The Textual editor is already in place

PT-EXA-T-
011
(High)

A visual/graphical editor
shall be provided for the
authoring of RAWFIE
experiments

The Visual editor is already in place

PT-EXA-T-
012
(High)

Platform shall allow
saving, editing and/or
deletion of an experiment
defined via EDL

The Textual/Visual editor offers this
functionality

PT-EXA-T-
013
(High)

The visual editor should
allow the definition of
movement and location
waypoints from a map

The Visual editor offers this functionality

PT-EXA-T-
014
(Medium)

During authoring of an
experiment selection of
resources should be
limited only to the ones
previously reserved from
the user at the foreseen
time of experiment

The Textual/Visual editor offers this
functionality

PT-EXA-T-
015
(High)

Validation of EDL script
should be possible prior to
or during saving

The Textual/Visual editor offers this
functionality

 Final specification of functionalities and interfaces

Provided Interfaces
• Web portal GUI:

Used by the experimenter to access the Experiment Authoring Tool

Required Interfaces
The Experiment Authoring Tool requires interfaces from the following backend services:

• EDL Compiler and Validator Service: perform compilation, recognize syntactic errors
and warnings and generate the appropriate code

 D4.8 - Design and Specification of RAWFIE Components (c)

26

• Experiment Validation Service: perform the experiment validation (efficient experiment
execution in the respective testbed)

• Experiment and EDL Repository: request saved EDL scripts, EDL language elements,
store EDL script

• Launching service: request interface to set the appropriate launching time the experiment
to be performed

All the above interfaces are implemented as planned. The following figure presents the high
level class diagram depicting the interfaces with other RAWFIE components.

Figure 5: Class diagram of the Authoring Tool

 Updated sequence diagrams
There are not any updates in the sequence diagrams of the authoring tool. Please refer in D4.5 for
details.

4.1.6 Experiment Monitoring Tool
Experiment Monitoring Tool collects and displays the information regarding experiments and the
resources used by them.

 D4.8 - Design and Specification of RAWFIE Components (c)

27

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-EXM-T-001
(HIGH)

A RAWFIE user should
be able to view an
overview of his/her
experiments

The ExperimentSelectionPage shows all
experiments of the logged-in user

PT-EXM-T-002
(MEDIUM)

Experiment Monitoring
and Visualisation should
be integrated

A direct integration will not be done.
Nevertheless, a better linkage will be the
realized. E.g. a link to directly start the
visualisation from this tool.

PT-EXM-T-003
(MEDIUM)

Cancellation of running
experiments should be
possible via Web Portal

The ExperimentStatusPage will provide a
button to cancel an experiment.

 Final specification of functionalities and interfaces

The logged-in user can first select the experiment of interest from a list of experiments, on which
he has appropriate rights. On the “ExperimentStatusPage” the status information of the selected
experiment will be displayed. Also a hyper line is present, to start the visualisation of the
experiment.
The ExperimentStatusManagement will collect and prepare the data for displaying in the web
page. For this, it communicates with the System Monitoring Service and the Master Data
repository. To start or cancel an experiment the Launching Services is called. It also listens to the
message bus to perform update on special events.

Figure 6: Experiment Monitoring Tool - Class diagram

 D4.8 - Design and Specification of RAWFIE Components (c)

28

Provided Interfaces
• Web portal GUI:

Used by the users (Experimenter, Testbed Operator) to get status information about
experiments or to cancel experiments.

Required Interfaces
• System Monitoring Service:

Get status information about involved testbeds and UxVs.
• Master Data Repository

Query the experiments of a user.
Query information about the experiment status.

• Launching Service:
To manually start or cancel an experiment the Launching Service is called to execute the
necessary steps

• Message Bus: Listen to special event to trigger the status update process.

 Updated sequence diagrams
No updates (refer to D4.5 section 4.1.6 for details)

4.1.7 System Monitoring Tool
Shows the status and the readiness of the various RAWFIE services (mainly the ones residing in
the middle tier).

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-SYM-T-
001
(HIGH)

Listing and/or
visualisation of current
system health status shall
be available.

StatusDashboardPage and also the third party
Icinga Web provide this functionalities

PT-SYM-T-
002
(MEDIUM)

The current system health
status should be grouped
thematically.

StatusDashboardPage will do this in future

PT-SYM-T-
003
(MEDIUM)

Filtering of the accessible
component health statuses
by user roles/rights should
be possible.

StatusDashboardPage will do this in future

PT-SYM-T-
004
(MEDIUM)

The health statuses
webpage should be
updated automatically.

StatusDashboardPage and also the third party
Icinga Web provide this functionalities

 Final specification of functionalities and interfaces

The System Monitoring Tool loads all its information from the System Monitoring Service and
displays them in an appropriate way.

 D4.8 - Design and Specification of RAWFIE Components (c)

29

The third party application Icinga Web will display detailed status information for Platform
Administrators. The simplified StatusDashboardPage will be public available to all RAWFIE
users to get informed about the system state.

Figure 7: System Monitoring Tool - Class diagram

The System Monitoring Tool only interacts with the System Monitoring Service. Please see the
section about the System Monitoring Service to get a more detailed description.

Provided Interfaces

• Web portal GUI:
Used by the users (Experimenter, RAWFIE Platform Administrator) to get system status
information

• Icinga Web:
RAWFIE Platform Administrator uses this to get detailed system status information

Required Interfaces

 D4.8 - Design and Specification of RAWFIE Components (c)

30

• System Monitoring Service:
Reads the system status from the middleware service for visualisation in the appropriate
web pages

4.1.8 UxV Navigation Tool
This component will provide to the user the ability to remotely navigate a squad of UxVs. The
UxV Navigation Tool will provide the ability to non-expert users to remotely guide a squad of
robotic vehicles to perform basic navigation missions such as waypoint navigation, map
construction, area surveillance and path planning.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-NAV-T-001
(HIGH)

This component will
provide to the user the
ability to remotely
navigate a squad of UxVs
through a user friendly
interface.

Instuctions_Manager will implement this in the
3rd iteration of development

PT-NAV-T-002
(HIGH)

This tool provides some
basic validation of the
user’s instructions

Instuctions_Manager

PT-NAV-T-003
(HIGH)

UxV Navigation Tool
should be available for the
navigation of all moving
resources.
Real time navigation may
be restricted by the
communication
technology of the UxV
data transmission.

Instuctions_Manager will implement this in the
3rd iteration of development

PT-NAV-T-004
(HIGH)

UxV Navigation Tool
should be available to
read from the database a
detailed version of the
map of the available areas

Initialization will will implement this in the 3rd
iteration of development

 D4.8 - Design and Specification of RAWFIE Components (c)

31

 Final specification of functionalities and interfaces

Figure 8: UxV Navigation Tool - Class diagram

Provided Interfaces

• Web portal GUI:
Used by the users (Experimenter, Testbed Operator) to get instructions.

Required Interfaces

• Experiment Controller Interface: So as to initialize the experiment and to transfer the
user's instructions	

• Experiment Monitoring Tool Interface: Although there is no direct connection between
these two components, the Experiment Monitoring Tool is required so as to inform the
experimenter about the current status of the experiment. Additionally, Experiment
Monitoring Tool is responsible for the cancellation of an experiment. Experiment
Controller is responsible for transferring messages between these two components.

 Updated sequence diagrams

No updates to the sequence diagram/s of this component. Please refer to the ones reported in
D4.5.

4.1.9 Visualisation Tool
The Visualisation Tool provides visualisation of the geospatial data of a running experiment.
Further, it enables the user to show and track all UxV resources and to apply additional
modifications (layers, filters, etc.) to the geospatial data and to show different sensor data, GPS
coordinates and others.

 D4.8 - Design and Specification of RAWFIE Components (c)

32

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-VIS-T-001
(HIGH)

The Visualisation Tool
shall allow the
visualisation of
information about the
running experiments, in
tabular/graphical form

When Start Visualisation is initiated, the
experiment will be visible

PT-VIS-T-002
(LOW)

A 3D visualization should
be available for the
tracking of all moving
resources

Moving the camera provides 3D view. An
option that will be provided only if 3D mapping
is presented for a specific testbed

PT-VIS-T-003
(LOW)

The Visualisation Tool
may allow visualisation of
video streams coming
from the experiment, and
experiment’s camera
control

Launching a widget if this option is available on
the UxV will show the video stream

PT-VIS-T-004
(MEDIUM)

The Visualisation Tool
shall provide access to
information / features
associated to each UxV
device on the geographic
map

When clicking on a vehicle, its
information/features will be visible in a widget

PT-VIS-T-005
(MEDIUM)

The Visualisation Tool
shall allow organization
and manipulation of
multiple geographic layers

A button similar to the one for switching
external providers, will give the option to
switch between layers

PT-VIS-T-006
(MEDIUM)

Possibility of
Adding/Removing/Updati
ng graphical widgets
should be provided

Widgets can be opened and closed with a mouse
click

PT-VIS-T-007
(MEDIUM)

Possibility to display both
actual and expected
UxVs’ route and position
should be provided

When experiment is started, both routes and
position are visualised

 Final specification of functionalities and interfaces

The VT has the following tasks:
• Handle experimenter requests for manipulating the geo information data. These requests	

will be sent to the VE over the Websocket (WSSteam and WSData channels), but the	
response will be received over the GIS (Map) channel. These manipulations include	

 D4.8 - Design and Specification of RAWFIE Components (c)

33

moving the map, panning, tilting, zooming etc. and also showing/hiding different layers	
like thermal layers, roads, obstacles and others

• Handle experimenter requests for camera manipulation. They will be handled internally	
without sending requests to the VE

• Handle experimenter requests for showing/hiding widgets on the screen. These widgets	
can represent speed of UxVs, GPS positions, different sensor data and other information.	
This data will be received from the VE over the websocket

• Convert the geo information data in the appropriate format for visualising by the web	
map library

• Plot the whole information in the browser window appropriately in an easily	
understandable manner in order to allow the experimenter to properly and successfully	
execute the experiment

Figure 9: Visualisation Tool - Class diagram

Required interfaces

• The GIS interface is used to send geographical information in various formats like WMS,
WFS, WPS and WCS from the VE to the VT. The VT requests map information over the
websocket and the geo-information data is sent over the GIS interface.

• The websocket is used in both directions to retrieve information like sensor data from VE
to VT or to inform the VE that the experimenter changed a layer in the VT and it needs to
be reloaded from the VE.

• Video stream from a camera in order to visualise a camera input from an UxV

Provided interfaces

• The VT has interface to the experimenter through a web-browser, allowing it to receive
commands from a mouse or keyboard and to manipulate the layout of the visualisation
like switching on/off widgets/layers/maps etc.

 D4.8 - Design and Specification of RAWFIE Components (c)

34

 Updated sequence diagrams
No updates (refer to D4.5 for details)

4.1.10 Data Analysis Tool
The Data Analysis Tool is the child-component of the Web Portal through which the user is able
to use functionalities provided by the Data Analysis Engine (Zeppelin GUI) as well as being able
to browse schemas currently present in the schema registry and select fields from a given schema
for later analysis (Schema Registry GUI).
Zeppelin is an interactive notebook interface that sits on top of the Data Analysis Engine. It
provides access to various interpreters such as jdbc, psql, python, and more importantly a spark
interpreter directly linked to the Compute Engine subcomponent of the Data Analysis Engine.
Via the Zeppelin interface, the user can create notebooks and design data analysis jobs using the
spark interpreter with the Scala programming language. It also enables tables and plots
embeddings, via the appropriate interpreter. The user can use several interpreters in a single
notebook. In order to design data analysis jobs, a lot of functions performing analytical tasks or
data structures manipulation are provided in built in packages.
Since the Data Analysis Engine enables the execution of both batch and streaming analysis jobs,
data sources can differ. Batch data can be fetched from a database, provided the appropriate
information is provided through the spark call in the Zeppelin notebook. Streaming data can be
sequentially acquired through the message bus (Kafka), directly queryable and fetchable from
within Zeppelin.
In order to enable the user to select which data to retrieve from the message bus (which Kafka
topic to subscribe to), the former can use the Schema Registry GUI of the Data Analysis Tool.
Via this interface, the user can browse the available schemas in the schema registry (whose
presence does not guaranty that data is actually being published under it on the message bus),
and select the field or fields of interest for later analysis. The user will then be redirected to a
newly created Zeppelin notebook containing a flattened structure of the selected information and
can then design the analysis job in the continuity of the same notebook.
The Data Analysis Tool also provides access to a dashboard (Grafana GUI) sitting on top of the
Whisper time series database which enables the visualization of the results of data analysis tasks
conducted on streaming data.
Finally, the Data Analysis Tool provides a view of the spark master GUI to monitor the activity
of the different components of the Data Analysis Engine.

 Component requirements as identified in D3.3

ID (Priority) Description Requirement Mapping with components

functionalities
PT-DAA-T-
001
(MEDIUM)

Analysis tool will provide
interface to data engine

All the parameters selected by the user through
the interface provided by the Data Analysis Tool
(schemas, fields, models, etc.) will enable the
Data Analysis Engine to compile this
information into an analytics task.

PT-DAA-T-
002
(LOW)

Analysis tool will provide
access to past experiments

The Graphite dashboard will be integrated in the
tool, enabling visualization of results contained
in the results repository.

 D4.8 - Design and Specification of RAWFIE Components (c)

35

PT-DAA-T-
003
(MEDIUM)

Analysis tool will provide
ability to query message
bus streams

The tool will provide the ability to query the
schema registry in the message bus. The desired
available schemas can then be specified as
parameters in any data analysis task definition.

PT-DAA-T-
004
(MEDIUM)

Analysis tool will provide
interface to end running
jobs

The tool will provide the ability to send a kill
signal for a specified running task which will
interrupt the associated task's execution.

PT-DAA-T-
005
(MEDIUM)

Analysis tool will provide
a simple metric selection
interface, a view of the
result stream and the job
status tab

The tool will provide task parameter selection
forms, a Graphite dashboard integration and a
Spark job-tracker page integration.

 Final specification of functionalities and interfaces

Provided interfaces:

Web Portal GUI: the Data Analysis Tool is available through the Web Portal GUI and
provides its functionalities via distinct tabs:

• Schema Registry GUI: enables the user to browse the schemas available on the
schema registry and select the fields of the targeted schema that the user wishes to
run a data analysis job on. Upon validation, selected entities will be embedded
automatically into a new notebook in Zeppelin, after which the user can design
the analytics task.

• Zeppelin GUI: interactive notebook interface that enables the user to design its
own data analysis experiments on the selected data. Various data analysis
algorithms and data manipulation functions are provided as part of built-in
packages of Zeppelin, transparently available to be used in the design of a
notebook. Since each block in a notebook is tied to an interpreter, the user willing
to design an analytics job from scratch without the provided functions can do so.

• Spark master GUI: enables the user/administrator to monitor Zeppelin activity,
which is the Data Analysis Engine Frontend.

• Grafana/Graphite GUI: enables the user to visualize what the running streaming
analysis job send to the Analysis Results Repository in real time. The user can
select the time window displayed and can therefore come back to see the sent
results at a specific period of time in the past.

Required interfaces:

• Data Analysis Engine
• Measurements Repository
• Analysis Results Repository
• Message Bus

 D4.8 - Design and Specification of RAWFIE Components (c)

36

 Updated sequence diagrams
For Sequence Diagrams where the Data Analysis Tool is involved, please refer to Section 5.7.

4.2 Middle Tier (Services and Communication components)

4.2.1 Overview
Middle Tier services provide most of the business logic needed to serve the users’ request
coming from the Frontend Tier, to get access to the data repositories on the Data Tier, and for the
interaction with the Testbed Tier software components through the Message Bus. The UML
Deployment Diagram of the Middle Tier components, showing the servers and the execution
environments for the deployment of Middle Tier services, together with the internal interaction
between services, as well as with Web Portal components, Testbed components, the GIS Server
and the Data Repositories, is shown in Figure 10 below. In the picture, the following main
interactions are highlighted:

1. LDAP interface to the LDAP Directory Service, used by the Users & Rights Service
2. REST/RPC API provided by RAWFIE services

o different components, especially the ones belonging to the Frontend Tier, use the
interface provided by the Users & Rights Protocol for authentication purposes

o all or almost all components from the Frontend Tier use the REST/RPC API
provided by the corresponding services in the Middle Tier, e.g. the Booking Tool
uses the one provided by the Booking Service, the Resource Explorer Tool the
one provided by the Testbed Directory service, and so on

3. JDBC/JPA connection to the Master Data Repository
o direct JDBC/JPA connection to the database is used, in the Middle Tier, by the

Testbed Directory Service, the Experiment Controller, the Booking Service and
the Launching Service

4. SFA AM REST API
o in the Middle Tier, the only service interacting with the SFA Aggregate Manager

API is the Booking Service
5. Message Bus

o the Launching Service, the Visualisation Engine, the Data Analysis Engine and
the Experiment Controller, among the others, interact and get access to
information coming from the UxVs / the Testbed Tier, by interfacing with the
Kafka Message Bus

6. Mail Service:
o accessed by the System Monitoring Service (write), the Booking Service (read)

and the Accounting Service (read/write)
7. KCQL (Kafka Connect Query Language / Protocol [15]) interface is used by the Kafka

HBase Connector (Measurements Backend Service in the diagram), to push
measurements from the Message Bus to the Measurements Repository

8. HBase Java / REST API used by the Data Analysis Engine to get access to the HBase
tables in the Master Data Repository, for batch analysis as explained in the following of
the document

 D4.8 - Design and Specification of RAWFIE Components (c)

37

Figure 10: Middle Tier Components – Deployment / Components Diagram

 D4.8 - Design and Specification of RAWFIE Components (c)

38

4.2.2 Testbed Directory Service

 Component requirements mapping, as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-DIR-S-
001 (HIGH)

The Testbed Directory
Service shall provide REST /
Web Service API to access
information on all Testbeds
registered in RAWFIE

Implementation of the getAllTestbeds REST
interface. Provides access to information about
Testbeds registered in RAWFIE

PT-DIR-S-
002
(MEDIUM)

The Testbed Directory
Service should provide
REST / Web Service API to
access information on all
Testbeds registered in
RAWFIE according to
predefined filters

Implementation of REST interfaces for filtering
Testbeds by:

• id
• name
• UAV support
• UGV support
• USV support
• AUV support
• a combination of health and status values

PT-DIR-S-
003 (HIGH)

The Testbed Directory
Service shall provide REST /
Web Service API to access to
information about available
Resources (UxVs) belonging
to the Testbeds registered in
RAWFIE

Implementation of the getAllResources REST
interface. Provides access to information about
all Resources registered in RAWFIE.

Implementation of a REST interface for getting
Resources belonging to a specific Testbed (by
Testbed id)

PT-DIR-S-
004
(MEDIUM)

The Testbed Directory
Service should provide
REST / Web Service API to
access to information on
available Resources (UxVs)
belonging to the Testbeds
registered in RAWFIE, and
according to predefined
filters.

Implementation of REST interfaces for filtering
Resources by:

• id
• name
• testbed id
• a combination of health, status and type

PT-DIR-S-
005 (HIGH)

The Testbed Directory
Service should provide the
possibility to register new
Testbeds in the RAWFIE
platform, as well as to
unregister (delete) testbeds
from the platform

Implementation of the createTestbed REST
interface. Allows the registration of a new
Testbed, by providing input with Testbed
information in JSON format

Implementation of the editTestbed REST
interface. Allows to update information for a
given Testbed, by providing input with updated

 D4.8 - Design and Specification of RAWFIE Components (c)

39

Testbed information in JSON format

Implementation of the deleteTestbed and
deleteTestbedParameters REST interface.
Provide the possibility to delete a Testbed,
specifying the Testbed id

PT-DIR-S-
006
(MEDIUM)

Some basic query
capabilities should be
provided

See API associated to PT-DIR-S-002 and PT-
DIR-S-004

PT-DIR-S-
007 (HIGH)
(from D3.2)

The Testbed Directory
Service shall provide the
possibility to register new
Resources belonging to a
specific Testbed in the
RAWFIE platform, as well
as to unregister (delete)
resources

Implementation of the createResource REST
interface. Allows the registration of a new
Resource, by providing input with Resource
information in JSON format

Implementation of the editResource REST
interface. Allows to update information for a
given Resource, by providing input with
updated Resource information in JSON format

Implementation of the deleteResource and
deleteResourceParameters REST interface.
Provide the possibility to delete a Resource,
specifying the Resource id

The Testbed Directory Service is a registry service of the middleware tier, where all the
integrated testbeds and resources accessible from the RAWFIE facilities can be registered,
deleted, modified or listed (filtered).

 Final specification of functionalities and interfaces
Following Figure 11 provides an updated picture of the Testbed Directory Service class
diagrams. In red are highlighted to the classes which have been modified, compared to the
previous version described in D4.5.

 D4.8 - Design and Specification of RAWFIE Components (c)

40

Figure 11: Testbed Directory Service class diagram

 D4.8 - Design and Specification of RAWFIE Components (c)

41

The updated list of the REST API exposed by the Testbed Directory Service is provided below.
For a detailed description of operations and responsibilities of the Testbed Directory Service
component, please refer to deliverable D4.5. In the Annex of the present document (section
9.1.1) a detailed description of the components’ interfaces (API) is provided along with
information on how to invoke them and the expected results.

Provided interfaces

• getAllTestbeds
• getAllResources
• testbed/identifier/{id}
• testbed/name/{name}
• testbeds/auv
• testbeds/uav
• testbeds/usv
• testbeds/ugv
• testbeds?health=Val1&testbedstatusmessage=Val2
• resource/identifier/{id}
• resource/name/{name}
• resources/testbedid/{id}
• resources?resource_status=Val1&resource_status_message=Val2&resource_type=Val3

&health=Val4
• createTestbed
• editTestbed
• deleteTestbed
• createResource
• editResource
• deleteResource
• deleteTestbedParameters/{id}
• deleteResourceParameters/{id}

Required Interfaces
The Testbed Directory Service is in charge of executing the queries to the Master Data
Repository, for realising CRUD (Create, Read, Update, Delete) operations. It uses JPA
technology for its operations.

 Updated sequence diagrams
Following Figure 12, Figure 13 and Figure 14 show the updated Sequence diagrams for 3 of the
most relevant use cases where the Testbed Directory Service is involved: search of available
resources based on specific criteria, registration of a new testbed and registration of a new UxV
resource. Updates with respect to the previous version of the same diagrams (in D4.5) are again
highlighted with red lines.

Search for an available resource

 D4.8 - Design and Specification of RAWFIE Components (c)

42

1. The Experimenter issues a search request by specifying the parameters relative to the
specific resource information, using the Resource Explorer Tool. In our example, the
Experimenter is requesting resources of type USV (encoded with resource code type =3
in the database).

2. The Resource Explorer Tool uses the REST API method implemented by the
ListingResource class, passing the appropriate value of the resource type query
parameter (search criteria)

3. The REST interface method uses the getResourcesFromParameters method of the
StorageService class, which in turn fetches the information from the Master Data
Repository, through the RepositoryHandler class, which provides the JPA (Java
Persistence API) interface to the database

Figure 12: Experimenter search resources of specific type (USV)

Register a new Testbed in the platform

1. The Platform Administrator starts with the process of registering a new Testbed into the
RAWFIE federation, after its formal approval and compliance with specific regulations.

2. In this case, the request is issued at local Testbed level through the Testbed Manager (see
related component description section). The Testbed Manager calls the createTestbed
REST interface implemented by the StoringResource class, by providing in input the
Testbed information structure (JSON)

3. The REST interface method uses the createTestbed method of the StorageService class,
which in turn inserts the information in the Master Data Repository, through the

 D4.8 - Design and Specification of RAWFIE Components (c)

43

RepositoryHandler class which provides a JPA (Java Persistence API) interface to the
database, and after the same information is converted in the TestbedType object structure

Figure 13: Platform admin registers a new Testbed

Add a new UxV device into a Testbed facility

1. The Testbed Operator starts with the process of registering a new Resource into the given
testbed

2. In this case, the request is issued at local Testbed level through the Testbed Manager (see
related component description section). The Testbed Manager calls the createResource
REST interface implemented by the StoringResource class, by providing in input the
Resource information structure including the Testbed Identifier (JSON structure)

3. The REST interface method uses the createResource method of the StorageService class,
which in turn inserts the information in the Master Data Repository, through the
RepositoryHandler class which provides a JPA (Java Persistence API) interface to the
database, and after the same information is converted in the ResourceType object
structure

 D4.8 - Design and Specification of RAWFIE Components (c)

44

 Figure 14: Register a new UxV resource

4.2.3 EDL Compiler and Validator
The EDL Compiler & Validator (ECV) is responsible for performing syntactic and semantic
analysis on the provided EDL scripts. The compilation and validation will be performed on top
of the proposed EDL model that is based on a specific grammar. The ECV will access the
provided script and identify any syntactic and semantic errors that could jeopardize the execution
of the experiment. Finally, when no errors are present, the component will have the opportunity
to generate the final code to be uploaded in the UxVs.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-CPV-001
(High)

A tool for translating EDL
into user directives shall
be provided

The Compiler & Validator provides this
functionality.

PT-CPV-002
(High)

An experimenter should
have the opportunity to use
a code generation engine 	

The Compiler & Validator provides this
functionality.

PT-CPV-003 Experiments defined via The Compiler & Validator provides this

 D4.8 - Design and Specification of RAWFIE Components (c)

45

(High) EDL shall be validated
after their authoring 	

functionality.

PT-CPV-004
(High)	

The compiler and validator
should communicate with
the authoring tool in order
to transfer error
indications and hints for
solving them	

The Compiler & Validator provides this
functionality.

 Final specification of functionalities and interfaces

The main operations are related to scripts compilation and validation and the production of the
appropriate files to be adopted by the remaining components of the RAWFIE architecture. A
syntactic validator accompanied by a custom validator (to cover any special needs for scripts
compilation) undertake the responsibility of identifying errors and warnings. Cross link
validation will be responsible to cover complex aspects of the experiments workflow. Finally, a
generator will be responsible producing the final code that could be adopted by the remaining
architecture.

Figure 15: Class diagram for the ECV

 Updated sequence diagrams
There are not any updates in the sequence diagrams of the ECV. Please refer in D4.5 for details.

 D4.8 - Design and Specification of RAWFIE Components (c)

46

4.2.4 Experiment Validation Service
The Experiment Validation Service (EVS) is responsible for experiments validations with regard
to execution issues. Thus, the EVS will validate if each experiment can be efficiently executed in
the selected Testbed.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-EXV-S-
001
(HIGH)

RAWFIE shall provide a
validator to constantly
check experiment
scenarios during runtime	

The Validator provides this functionality.

PT-EXV-S-
002
(HIGH)	

The validation service
should perform syntactic
checking	

The Validator provides this functionality.

PT-EXV-S-
003
(HIGH)

The validation service
should perform semantic
checking	

The Validator provides this functionality.

 Final specification of functionalities and interfaces

The EVS involves a simple interface accessible by other components that are responsible to
initiate the validation process. An attribute named 'verbose' indicates if the service will provide
extensive information in a data log related to the analytical view of the validation process. In the
following picture, we present the class diagram of the discussed service.

 D4.8 - Design and Specification of RAWFIE Components (c)

47

Figure 16: Class diagram for the EVS

 Updated sequence diagrams

There are not any updates in the sequence diagrams of the EVS. Please refer in D4.5 for details.

4.2.5 Users & Rights Service
The Users & Rights Service provides authentication and authorization to all components of the
system.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-USR-S-001
(HIGH)

User login credentials
checking shall be
provided

The UserAndRightsServiceProtocol interface
provides this function.

PT-USR-S-002
(HIGH)

RAWFIE platform shall
support various roles
with different privileges
at every level of access.

Users & Rights Service can assign several
roles to each user. The applications themselves
need to know which roles indicate access
privileges. They can then check if the user has
the required roles.

PT-USR-S-003
(LOW)

The Users & Rights
Service may provide a
proxy service for web
application that do not
check access rights.

The ProxyService proxies a HTTP request and
checks the roles.

 D4.8 - Design and Specification of RAWFIE Components (c)

48

 Final specification of functionalities and interfaces

The Users & Rights Service is based on the Users & Rights Repository that is a LDAP server.
The LDAP server stores users/component IDs and their roles (rights). Also groups of users that
can have roles are supported. Components may directly access the LDAP server (using a
restricted account) or via the Users & Rights Services to get advanced query and editing
functions. (Hint: If possible components should use the Users & Rights Services. But if some
existing software with LDAP support is used, it will be easier to use LDAP instead of adapting
the software).
The authentication between the different RAWFIE components can be done via X.509 client
certificates. For authorization the roles need to be checked via the Users & Rights Services or
Repository.
The Users & Rights Services interface will provide functions to check credentials (in cases
where a user/experimenter does not provide a client certificate, a basic user/password
authorisation is possible), to read, add and edit users, to change the password of a user and to
check the rights/roles of a user.
An additional ProxyService is provided for applications that do not check access rights. It
proxies the HTTP request, looks for the requested URL, determines the needed roles for this
URL and checks if the user of the session has the needed roles.

 D4.8 - Design and Specification of RAWFIE Components (c)

49

Figure 17: Users & Rights Service - Class diagram

Provided interfaces

• UserAndRightsServiceProtocol:
Any other RAWFIE component (especially from the Front Tier) may access this interface
to get user related information.
UserAndRightsServiceProtocol methods are exposed both via Avro RPC or REST API.

Required interfaces

• Users & Rights Repository:
will provide a standard LDAP interface for access

 Updated sequence diagrams

Password-based user login

 D4.8 - Design and Specification of RAWFIE Components (c)

50

1. A user opens via its browser an application of the RAWFIE web page and requests a
restricted resource (URL)

2. The application checks if the user is locally logged-in (e.g. via cookie for this application)
3. If not

a. Redirect to SSO page
b. The SSO page checks if the user is globally logged in
c. If not

i. The user is asked for credentials (username and password)
ii. The SSO page sends the credentials to the User & Rights Service

iii. The User & Rights Service checks the credentials and returns whether
they are OK

d. The SSO page redirects to the original web page (with some login token as
parameter)

e. The user requests the original web page again (with some login token as
parameter)

f. The application checks the login token and creates a user session (e.g. transmitted
via a cookie)

4. Proceed with “Check user authorisation”

 Figure 18: Users & Rights Service – Password-based user login

 D4.8 - Design and Specification of RAWFIE Components (c)

51

X.509 Certificate-based user login
No updates (refer to D4.5 for details)

Check user authorisation

1. After the user has logged in and has requested a restricted resource, the web application
checks if user is allowed to see the resource

2. Component requests the Users & Rights Service if the given user has the specific
role/right to see/edit this resource

3. The Users & Rights Service does:
a. Check if the user exits
b. Get groups of the user
c. Check if the role members contain the user or one of the groups of the user

4. If ok: grant access to the user
5. If wrong: show access denied to the user.

Figure 19: Users & Rights Service – Check user authorisation

Trusted and secure communication between the components
The components in RAWFIE should also use X.509 certificates to establish a trusted and secured
communication between them.

1. component A calls service of another component B

 D4.8 - Design and Specification of RAWFIE Components (c)

52

2. Transport layer: SSL handshake with client and server certificates (on error close
connection)

3. If there is a need to verify the authorisation
a. checks the certificate of the component A and reads the component name out of

the certificate
b. Component B calls Users & Rights Service to check if component A or the user

that has initiated the whole process has the needed roles/rights
c. Transport layer: SSL handshake with client and server certificates (on error close

connection)
d. The Users & Rights Service

i. checks the certificate of the component B and reads the component name
out of the certificate and

ii. checks if component B is allowed to read permissions
iii. checks if component A or the user has the needed roles/rights
iv. Returns the result (allowed/not allowed)

4. If allowed
a. component B executes the service method
b. returns the result to component A

5. If not allowed
a. component B returns “access denied” to component A

 D4.8 - Design and Specification of RAWFIE Components (c)

53

Figure 20: Users & Rights Service – Check user authorisation

4.2.6 Booking Service
The Booking Service is responsible for processing and validating all reservations requests at user
or/and experiment level initiated within the RAWFIE platform. It is also responsible for handling
changes of status of Booking requests and informing the interesting parties via appropriate
notifications. In the 3rd iteration Booking Service will be augmented to achieve synchronization
with the SFA Aggregated Manager Reservation process.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-BOO-S-
001
(HIGH)

Booking Service shall
support reservations of
resources at both user level
and experiment level

BookingManager provides methods for
processing both experimenter level and
experiment reservations (see class diagram)

PT-BOO-S- User level booking shall Booking Tool can call the IBookingService

 D4.8 - Design and Specification of RAWFIE Components (c)

54

002
(HIGH)

be triggered by the
Booking Tool via a REST
API.

interface methods both via RPC or REST (see
Interactions and relationships with other
components)

PT-BOO-S-
003
(HIGH)

Experiment level booking
shall be triggered by the
experimenter before
issuing a manual or
schedule launching of a
validated experiment

processExperimentLevelRequest(…) method is
provided by the BookingManager which should
be called by other services or tools (i.e.
Experiment Authoring Tool) prior to calling the
Launching Service

PT-BOO-S-
004
(HIGH)

Experiment level booking
shall support both
immediate booking as well
as booking at a future
time

Addressed by design and the way booking
process is implemented. User booking is
performed at specific timeslots in the future.
Experiment booking has as prerequisite an
existing user booking and refines it.

PT-BOO-S-
005
(HIGH)

Booking Service shall
provide all the necessary
methods to manage the
bookings including
addition, modification and
cancellation/deletion
operations

IBookingService interface provides methods for
all requested actions

PT-BOO-S-
006
(HIGH)

Booking Service shall be
able to compute and return
feedback on conflicting
bookings for a provided
booking request

checkForConflictingBooking(…) method
provides this functionality

PT-BOO-S-
007
(HIGH)

Reservation Data should
be persistent in order to
survive service failures
and be available by other
services

BookingManager module interacts with the
master data repository via JDBC/JPA in order to
update/insert booking info

PT-BOO-S-
008
(MEDIUM)

Historical data retrieval for
Bookings/Reservations
should be available on
demand

All data related to reservations are stored in the
master data repository and can be queried

PT-BOO-S-
010
(HIGH)

Booking functionality
shall be able to correctly
handle simultaneous
Reservations requests by
end users

IBookingService methods will be exposed as
REST and RPC services in a servlet container
ensuring multithreaded support

PT-BOO-S-
011
(MEDIUM)

Notification mechanisms
may be provided for
experiments scheduled for
execution in the future.

NOT APPLICABLE
Refers to execution of experiments and not to the
booking process
(see also launching service)

PT-BOO-S-
012

Booking functionality
should provide means to

BookingRequestChecker will apply a set of
checks on the proposed reservation ensuring

 D4.8 - Design and Specification of RAWFIE Components (c)

55

(HIGH)

ensure fairness in resource
booking as well as protect
for malevolent actions that
a user may perform.

fairness and protection form spurious actions
(see Operations and attributes section)
Moreover, booking requests are generally put in
a pending status waiting for approval by a
testbed operator which introduces an extra level
of protection from malevolent actions

PT-BOO-S-
013
(HIGH)

All Booking Service
incoming requests should
contain user initiating
information and
delegate/contact the User
& Rights service in order
to perform validation

 Final specification of functionalities and interfaces

Provided Interfaces
• Booking Service implements the IBookingService interface (see class diagram) that

exposes the following methods:
o addBooking
o editBooking
o checkForConflictingBookings
o deleteBooking
o rejectBooking
o approveBooking
o getBooking
o getBookings

IBookingService methods are exposed both via RPC or REST API. The interface is mainly used
by the Booking Tool that provides a Web UI to manage the bookings (edit/add/approval etc.):

Required Interfaces

• Booking Service interacts with the Master Data Repository via JDBC/JPA, in order to
retrieve/insert/update booking information for a registered experimenter/user of the
platform.

• Booking Service acts also as a producer of booking status update messages
(BookingStatusMsg) that are sent to the message bus and may be consumed by other
interested services/modules.

• Booking Service interacts with the SFA Aggregate Manager Rest API to enable
update/synchronization with the SFA reservation structures (maintained internally by the
Aggregate Manager Triple Store DB.

In the figures that follow, red colour is used to highlight differences compared to the previous
version of the architecture

 D4.8 - Design and Specification of RAWFIE Components (c)

56

Figure 21: Booking Service - Class diagram

 Updated sequence diagrams

Only add/edit a booking procedure is being affected by the integration/synchronization with SFA
Aggregate manager reservation process. The rest sequence diagrams remain the same as
described in the previous version of the deliverable (D4.5).

 D4.8 - Design and Specification of RAWFIE Components (c)

57

Figure 22: Booking Service - Overview

View bookings of a testbed
No updates (refer to D4.5 for details).

Add/edit a booking (experimenter)

1. Experimenter submits the form with the booking details to the Booking Tool
2. Booking Tool calls the addBooking(…) or editBooking(…) method of the

BookingManager
3. The BookingManager processes the booking request:

• reads all bookings of the given resources in the given timespan from the Master
Data Repository

• contacts the BookingRequestChecker that checks the validity of the request and
whether any conflicts with existing booking are introduced

4. If conflicts are identified, they are returned to the Booking Tool, which shows them to the
user

5. If there are no conflicts, then BookingManager:
a. Calls allocate on the SFA Aggregate Manager in order to add reservation the SFA

Triple Store. If a conflict is detected then we return to step 4 above otherwise the
process continues

b. Writes or updates the data repository appropriately with the new or updated
booking data. The booking status is set to PENDING (to be approved by a testbed
operator),

 D4.8 - Design and Specification of RAWFIE Components (c)

58

c. creates and sends an email message both to the experimenter (initiating the
request) as well as to the registered testbed operator responsible for approving the
booking later on

d. return a success message to the Booking Tool, which shows it to the user

Figure 23: Booking Service – Add/Edit a booking

Approve/Reject a pending booking (testbed operator)
No updates (refer to D4.5 for details).

 D4.8 - Design and Specification of RAWFIE Components (c)

59

4.2.7 Launching Service
The Launching Service (LS) is responsible for handling requests for starting or cancellation of
experiments. It supports short term and long term launching. LS will execute only authorized and
approved experiments based on spatio-temporal constraints validated just prior to the actual
launching.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-LAU-S-
001
(HIGH)

Launching Service shall
support short-term or
manual launching of an
experiment initiated
directly by an
experimenter

ILaunchingServiceProtocol provides a
ManualStart(…) method

PT-LAU-S-
002
(HIGH)

Launching Service shall
support long-term or
scheduled launching of an
experiment initiated
directly by an
experimenter

ILaunchingServiceProtocol provides a
schedule(…) method.
The LS contains an internal
ExperimentScheduler singleton module that can
be used for adding or removing an experiment
for/from future launching

PT-LAU-S-
003
(HIGH)

Each executing experiment
shall be uniquely
identified within RAWFIE
ecosystem

LaunchingServiceProtocolImpl class provides a
generateExecutionId(…) method that should
create a unique Id to be associated with launched
experiment

PT-LAU-S-
004
(HIGH)

During launching it must
be ensured that the
experiment to be started
has been validated based
on spatio-temporal
constraints

LaunchingServiceProtocolImpl class provides a
preValidate(…) method that applies a sequence
of checks prior to actual launch

PT-LAU-S-
005
(HIGH)

During launching it must
be ensured that the
experiment to be started
belongs to an authorized
user of the RAWFIE
platform

LaunchingServiceProtocolImpl class provides a
preValidate(…)method that applies a sequence
of checks prior to actual launch

PT-LAU-S-
006
(HIGH)

The Launching Service
shall be able to address
simultaneous requests for
starting an experiment

ILaunchingServiceProtocol methods will be
exposed as REST and RPC services in a servlet
container ensuring multithreaded support

PT-LAU-S-
007
(HIGH)

The Launching Service
shall send an appropriate
message upon successful

ExperimentStartRequest JSON message is sent
by createAndSendMessage() upon successful
processing of manual or scheduled launching

 D4.8 - Design and Specification of RAWFIE Components (c)

60

starting of an experiment (see sequence diagrams below)
PT-LAU-S-
008
(HIGH)

The Launching Service
shall interact with other
components or database
services in order to
retrieve information
needed for deciding on
launching an experiment

LaunchingServiceProtocolImpl class provides a
updateLaunchConfig(…) method and the service
interacts with the Master Data Repository for
retrieving Booking and Experiment Related
information

PT-LAU-S-
009
(HIGH)

Interactions of the
launching service with
database services and/or
other components should
respect the RAWFIE
platform boundary

By design, Launching Service interacts only with
middle tier components, the message bus and the
master repository.
No direct communication with the testbed tier
exists.

PT-LAU-S-
010
(HIGH)

Launching service shall
support requests for
experiment cancellation

ILaunchingServiceProtocol provides a
cancel(…) method and may sent an
ExperimentCancelRequest to the
ExperimentController

PT-LAU-S-
012
(HIGH)

Launching service shall
provide appropriate
feedback to the requested
entity regarding failures on
fulfilling a request

All ILaunchingServiceProtocol methods may
return a LaunchingActionResp structure which
includes a boolean status field indicating success
or failure and a msg string field that may provide
details the problem

PT-LAU-S-
013
(HIGH)

Launching service shall
not alter or modify any
information related to the
actual execution of an
experiment

By design, Launching Service generates and
forwards only appropriate messages for initiating
or cancelling an experiment. Database write
operations are related only to updating/relating
the executionId with an experiment and they do
not “touch” application specific data

PT-LAU-S-
014
 (MEDIUM)

Notification mechanisms
may be provided for
experiments scheduled for
execution in the future.

ExperimentScheduler component provides a
sendNotification(…) event that can be triggered
at a configurable interval prior to actual
launching

 Final specification of functionalities and interfaces

Provided Interfaces
• Launching Service implements the ILaunchingService interface (see class diagram)

which provides the following methods:
o manualStart (issues a launch request immediately for a given experiment)
o schedule (schedules an experiment for launching at a future time)
o cancel (issues a request for cancelling a running or scheduled experiment)

IBookingService methods are exposed both via RPC or REST API. The main components for
calling the provided API are Experiment Authoring Tool & Experiment Monitoring Tool.

Required Interfaces

 D4.8 - Design and Specification of RAWFIE Components (c)

61

• Launching Service interacts with the Master Data Repository via JDBC/JPA
(IBookingData interface), in order to retrieve booking related information and proceed
with certain validation actions required prior to experiment launching.

• Launching Service interacts with the Master Data Repository via JDBC/JPA
(IExperimentData interface), in order to retrieve/update/create experiment execution
related information

• Launching Service produces ExperimentLaunchRequest and ExperimentCancelRequest
messages that are send to Messages Bus and consumed by any other middle tier
component. The main component interested for those types of messages is the
ExperimentController module.

The figure below depicts a class diagram showing the interfaces and internal structure of the
Launching Service (red colour is used to highlight differences compared to the previous version
of the architecture.

 D4.8 - Design and Specification of RAWFIE Components (c)

62

Figure 24: Class diagram of the Launching Service

 Updated sequence diagrams
All sequence diagrams remain the same as in the previous version of the deliverable (D4.5) with
the exception that message send to message bus is of type ExperimentLaunchRequest instead of
ExperimentStartRequest.
Manual Launch
No updates (refer to D4.5 for details)

Scheduled Launch
No updates (refer to D4.5 for details)

 D4.8 - Design and Specification of RAWFIE Components (c)

63

Cancellation
No updates (refer to D4.5 for details).

4.2.8 Visualisation Engine
The Visualisation Engine provides the necessary back end services for geospatial data
visualisation related to running experiments. It provides the required maps for area visualisation,
can cache data for faster load times and finally provides a spatial database for converting and
storing UxV information into geo information layers.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-VIS-E-
001
(HIGH)

The Visualisation Engine
shall retrieve from the
message bus all runtime
experiment information
needed for visualising the
UxVs and/or any sensor
measurement

With StartExperiment() the user automatically
subscribes to topics that provide information
about the experiment

PT-VIS-E-
002 (LOW)

The Visualisation Engine
shall provide a GIS server
capable of handling
geographical layers
(overlays)

GeoServer will be deployed, configured and
used for this task

PT-VIS-E-
003 (LOW)

The Visualisation Engine
may allow cache of data
for faster access to the
available geographic
layers

GeoWebCache will provide this option given we
provide our own maps of the premises

PT-VIS-E-
004
(MEDIUM)

The Visualisation Engine
shall provide the
possibility to reply
experiments using
historical data

The data from the message bus will be mapped
in the database and the VE will replay it upon
request from the VT

 Final specification of functionalities and interfaces

The VE takes care of different tasks:

• Manage what is going to be presented to the experimenter, which UxVs are going to be
plotted, over which terrain, when etc. This information will come from the Message Bus
and will be sent to the VT.

• Indicate when the experiment is started/stopped and if there are issues with the running
experiments, a decision will be made how to present them to the experimenter. This

 D4.8 - Design and Specification of RAWFIE Components (c)

64

information will come from the Experiment Controller and will be sent to the VT over
the websocket

• Which maps are about to be retrieved and from where. Maps may be retrieved from
different providers like Google Maps, Bing Maps, OpenStreetMaps etc. and will be sent
to the VT over the GIS channel

• Based on preferences, defined by the experimenter or set for an experiment, layers will be
prepared on top of the main map to indicate different conditions, scenario and other
important geographic information. This information will come from the VT over the
websocket

Figure 25: Visualisation Engine - Class diagram
	
Required interfaces:

• The VE has interface to the Message Bus for receiving updates on the UxV in the
Publish/Subscribe manner.

• The VE interface to the Experiment Controller will provide information about the
execution of the experiment. It will monitor for start and stop of the real experiment, as
well as for cases when the connection to the UxV is lost and others.

• The external map interface is used in the VE for retrieving maps from external provider.
In case the experimenter needs detailed and publically available maps, they can be
received from such services over this interface.

Provided interfaces:

• The GIS interface is used to send geographical information in various formats like WMS,
WFS, WPS and WCS from the VE to the VT. The VT requests map information over the
websocket interface and the geo information data is sent over the GIS interface.

 D4.8 - Design and Specification of RAWFIE Components (c)

65

• The websocket interface is used in both directions to retrieve information, like sensor
data from VE to VT or to inform the VE that the experimenter changed a layer in the VT
and it needs to be reloaded from the VE.
 Updated sequence diagrams

No updates (refer to D4.5 for details).	

4.2.9 Data Analysis Engine
 Component requirements as identified in D3.3

ID
(Priorioty)

Description Requirement Mapping with components
functionalities

PT-DIR-S-
001
(MEDIUM)

Analysis engine will
support accepting analysis
jobs

In order for a job to be accepted, the definition of
the required user-specified parameters and
models has to be performed through the Data
Analysis Tool before the encapsulation.

PT-DIR-S-
002
(MEDIUM)

Analysis engine will
support compiling
analysis jobs

Before compilation, an analysis job has to be
accepted by the engine. Previously specified
requirements therefore apply as well.

 Final specification of functionalities and interfaces

No changes compared to the design reported in D4.5. Please refer to that deliverable for final
design information of the Data Analysis Engine.

 Updated sequence diagrams
Updated sequence diagrams where the Data Analysis Engine component is involved, are
reported in Section 5.7 later in this document.

4.2.10 System Monitoring Service
The System Monitoring Service will check if all system components and services are running.
This also includes data (if available) about the status of the Testbeds and UxVs from the
Monitoring Manager of each Testbed.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-SYM-S-
001
(HIGH)

RAWFIE middle tier shall
include a module to
monitor the performance
of the middle tier
components.

The third party application Icinga will monitor
the servers and the services on them

PT-SYM-S-
002
(HIGH)

RAWFIE Testbeds and
UxVs statuses should be
monitored

The Monitoring Manager of the Testbed should
send health status data on the message bus. This
data will then be evaluated by the System

 D4.8 - Design and Specification of RAWFIE Components (c)

66

Monitoring Service.
PT-SYM-S-
003
(HIGH)

RAWFIE system
administrators should be
informed if critical, for the
RAWFIE platform
operation, services are
down

Icinga can be configured to send emails on case
of an error. SMS may also be sent, by sending an
email to an SMS provider.

PT-SYM-S-
004
(LOW)

User may register for
notifications if certain
components are down

Icinga can also be configured for this.

PT-SYM-S-
005
(MEDIUM)

Notifications about
planned downtimes

Icinga can also be configured for this.

 Final specification of functionalities and interfaces

The System Monitoring Service is realized by configuring and extending the existing monitoring
solution Icinga [2] (a fork of Nagios [4]). Nagios is open source and a de-facto standard software
for system monitoring.
The system monitoring software Icinga has built-in functionalities to check health status of
standard system, supporting actions like e.g. is server alive, does database access connections,
and is memory usage too high. NRPE (Nagios Remote Plugin Executor) extension of Icinga and
the JNRPE (Java NRPE) Server is used to write own plugins that collect special status
information from the RAWFIE components. The plugin for RAWFIE transfers the
asynchronously collected data by the System Monitirong Servcie (via Message Bus) to the Icinga
server.
Icinga can also be configured to send notification (e.g. an email) to a predefined group of
receivers, if servers or services are not responding or if the defined thresholds of performance
indicators are exceeded.
To get health status information from Icinga for further processing in the System Monitoring
Service, the MK-Livestatus API [6] extension is used.
The System Monitoring Service provides the interface “SystemMonitoringServiceProtocol”. It is
used by the System Monitoring Tool and the Experiment Monitoring Tool to display the data on
a web page.

 D4.8 - Design and Specification of RAWFIE Components (c)

67

Figure 26: System Monitoring Service - Class diagram

Provided interfaces

• System Monitoring Service (SystemMonitoringServiceProtocol):
The System Monitoring Tool display the collected data in a web page UI. Also the
Experiment Monitoring Tool will show some status information about the resources
belonging to an experiment.

Required Interfaces
• Health status interfaces / API exposed by other components

All important components of the RAWFIE system are monitored via standard procedures,
via special plugins/status interfaces or they send their status autonomously to the message
bus.

 Updated sequence diagrams

No updates (refer to D4.5 for details).

4.2.11 Accounting Service
Keeps track of resources usage by individual users to charge them later. The appropriate final
solution for the accounting functionalities of RAWFIE is under investigation and it is strictly
related to the overall business model and the specific accounting approach adopted on each

 D4.8 - Design and Specification of RAWFIE Components (c)

68

different testbed. Among the others, the Open Source solution KillBill[7] is being considered and
analyzed.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-ACC-S-
001
(MEDIUM)

The accounting service
should be capable to
accept different cost
models regarding
RAWFIE usage on a per
service basis

KillBill provides different “plans” for “products”
where the prices could be defined on
subscription base and usage base (“consumable”)

PT-ACC-S-
002
(MEDIUM)

The accounting service
should be capable to
gather statistics regarding
usage of the platform by
experimenters.

Data about the used resources are queried from
the Master Data Repository. Notifications from
the message bus about finishing, cancelling or
aborting an experiment are taken into account.

PT-ACC-S-
003
(MEDIUM)

The RAWFIE platform
should record information
related to time and type of
access for a service by a
user.

Such events are gathered (see PT-ACC-S-002)
and sent to KillBill which records them to create
invoices later

PT-ACC-S-
004
(MEDIUM)

The cost model used may
take into consideration the
overall time of
experiments executed by a
user of the platform.

The “plans” of KillBill allow an adaption of the
price when a specific amount of used units is
exceeded.

PT-ACC-S-
005
(MEDIUM)

The accounting service
may support different
types of charging based on
the type of the
experimenter (industrial,
research, university etc.)

KillBill “plans” can be grouped to price lists. So
price lists with discount plans can be offered to
special groups of customers.

PT-ACC-S-
006
(MEDIUM)

The accounting service
may support predefined
types of memberships
regarding usage of the
platform that may depend
on various types of
parameters

KillBill supports to have the same product in
different “plans” the user may choose. So e.g.
there could be a plan with a standing charge and
low resource usage charges and a plan with no
standing charge but high resource usage charges

PT-ACC-S-
007
(MEDIUM)

The accounting service
should be able to handle
the addition of new
services that may be
incorporated in the

KillBill allows the updating of the catalogue
(contains products, plans and so on) and variable
rules how to apply the changes to running
subscriptions.

 D4.8 - Design and Specification of RAWFIE Components (c)

69

RAWFIE platform during
time.

 Final specification of functionalities and interfaces

The Accounting Service will rely on Kill Bill[7] to manages product catalogues, subscriptions,
invoices and payments. The Accounting Service reacts to events that may cause cost for the
experimenter and sent appropriate messages to the KillBill server. For this, the Accounting
Service listens to the Message Bus and looks for changes in the Master Data Repository.

Figure 27: Accounting Service – Class diagram

Please note, that the final technological solutions (open source or not, and so on) for the
Accounting Service, are still under investigation and modifications are possible.

 Updated sequence diagrams
Register usage information

1. Through the message bus the Accounting Service receives a notification about an event,
that should be charged

2. The Accounting Service requests the updated information from the Master Data
repository.

3. The Accounting Service processes the loaded information (choose correct product
catalogue item and amount)

4. The Accounting Service sends the catalogue item along with the amount to KillBill

 D4.8 - Design and Specification of RAWFIE Components (c)

70

5. KillBill processes the data.

Figure 28: Accounting Service – Register usage information

Register external payment

1. The financial controller sends payment data about an external received payment (e,g, via
the bank account) to the accounting service

2. The Accounting Service sends the appropriate payment notification for the account to
KillBill

3. KillBill updates the account balance accordingly

Figure 29: Accounting Service – Register external payment

Payment via a payment system

1. The experimenter starts the payment process in the Web Portal
2. The payment session is started via the AccountingService, KillBill and the external

Payment System.
3. The payment session key is returned to the browser of the experimenter and he is

redirected to the website of the payment system (with payment session key as parameter).
4. There the experimenter performs the payment and KillBill is notified about payment and

acknowledges this.
5. The payment ends successfully and the payment system redirects the experimenter to the

Web Portal.
6. In the Web Portal the experimenter can again check the payment result.

 D4.8 - Design and Specification of RAWFIE Components (c)

71

Figure 30: Accounting Service – Payment via payment system

4.2.12 Experiment Controller
The Experiment Controller (EC) is a service placed in the middle tier and is responsible to
monitor the smooth execution of each experiment, acting as a ‘broker’ between the experimenter
and the resources in (near) real time.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-EXP-C-
001 (HIGH)

Cancellation of running
experiments should be
possible

The cancellation of a running experiment is
supported, but Experiment Controller module is
bypassed. The cancellation of an ongoing
experiment is possible through direct
communication between Experiment Monitoring
Tool (see 4.1.6 paragraph) and the Resource
Controller.

PT-EXP-C-
002
(MEDIUM)

Experiment Controller
shall allow experimenters
to remotely navigate
UxVs.

Experiment Controller transfers the
experimenter’s desired trajectories to the
corresponding Resource Controller module.

PT-EXP-C-
003 (HIGH)

The Experiment Controller
shall support the execution
of experiments that
involve multiple testbeds

The design of the Experiment Controller
provides this functionality.

 D4.8 - Design and Specification of RAWFIE Components (c)

72

PT-EXP-C-
004 (HIGH)

The Experiment Controller
shall be able to support
multiple experiments
running the same time in
parallel

The design of the Experiment Controller
provides this functionality.

PT-EXP-C-
006 (HIGH)

The Experiment Controller
shall support receiving
feedback at regular
intervals from all testbed
facilities about the
progress of the experiment
in this time interval

Experiment Controller is informed about the
progress of the ongoing experiments through
specialized status messages.

PT-EXP-C-
007 (HIGH)

The Experiment Controller
shall be able to override
the order of instructions
described in the input
script while the
experiment is running

 Experiment Controller will support this
functionality in the future.

PT-EXP-C-
008 (HIGH)

The Experiment Controller
shall be able to
continuously feed the
front-end tier (Experiment
Monitoring Tool) giving
the experimenter a clear
view of the experiment
workflow as a whole

 Experiment Controller updates/inserts
information inside the Master Database
Repository (JDBC) about the status changes of
the ongoing experiments (updated tables:
experiment_execution, experiment,
experimentlog).

PT-EXP-C-
009 (HIGH)

The Experiment Controller
shall send distinct error
and warning messages in
every case the
experiment’s state
diverges from the aimed
target

 This kind of information is included in the
distinct status messages that are annotated in the
Master Database Repository (JDBC).

 Final specification of functionalities and interfaces

The main functionalities of the Experiment Controller are:
• Transfer the instructions from the Launching Service to the Resource Controller
• Retrieve from the RAWFIE database: i) the appropriate EDL script, ii) information about

the coordinate system of the testbed and iii) the partitions IDs of the involved vehicles
• Control the distributed status of the experiments
• Receive status updates for all the running experiments from the Resource Controller and

keep logs about each state transition
• Update RAWFIE database tables about the outcome of the completed experiments

Required Interfaces

 D4.8 - Design and Specification of RAWFIE Components (c)

73

• Message Bus: Experiment Controller interacts with the following components
through the Message Bus:

o Launching Service: Experiment Controller consumes
ExperimentLaunchRequest messages indicating that a new experiment has to
be forwarded to the corresponding testbed facility.

o Resource Controller, Testbed Manager and Network Controller: Experiment
Controller produces ExperimentStartRequest that is send to Messages Bus and
consumed by any testbed tier component. Additionally, Experiment Controller
receives feedback (ExperimentStatusMsg messages) from all testbed Resource
Controllers about the progress of each ongoing experiment.

• Master Database Repository (JDBC): Experiment Controller reads and stores
information in the RAWFIE database:

o Experiment Controller retrieves experiment related information (EDL script,
partition IDs, coordinate system, canonical names) and proceeds with the
certain preparatory actions required prior to the experiment dispatching.

o Experiment Controller updates/inserts information about the status changes of
the ongoing experiments (tables: experiment_execution, experiment,
experimentlog)

Figure 31 Experiment Controller - Class Diagram

 D4.8 - Design and Specification of RAWFIE Components (c)

74

 Updated sequence diagrams

Figure 32 Experiment Controller - Sequence diagram

 D4.8 - Design and Specification of RAWFIE Components (c)

75

4.3 Testbed Tier (Testbeds and Resources control components)

4.3.1 Overview
This subsection describes the Testbed Control, monitoring and analysis components. Network
Controller manages the network connections and the switching between different technologies in
the testbed. Testbed Manager is responsible for the administration of the devices of each
federation Testbeds as well as the operational control of all Testbed components needed for the
successful execution of each experiment. Monitoring Manager is actually part of the Testbed
Manager component and enables the observation of the resources usage of the testbed and UxV
nodes. Aggregate Manager undertakes the responsibility to enable RAWFIE compatibility with
the Slice-based Federation Architecture (SFA) that represents the de facto standard API for
testbeds federation.
At testbed level the Resource Controller is the main navigation component which ensures the
safe and accurate guidance of the UxVs based on the user's preferences working closely with
Experiment controller that runs at platform level. The Proximity component allows members of a
swarm of autonomous vehicles to discover the existence and possibly interact with each other
with very low latency without depending on the RAWFIE middleware or any other ground
equipment. A high level diagram showing the interactions among testbed components is
presented in Figure 33. More details about the Testbed Tier components are given in the
following subsections.

Figure 33: Testbed control, analysis and monitoring– Deployment / Components Diagram

 D4.8 - Design and Specification of RAWFIE Components (c)

76

4.3.2 Monitoring Manager
Monitoring Manager is responsible for the monitoring of the status of a testbed and the devices
belonging to it, at functional level, reading information about the ‘health of the devices’ and their
current activity.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with
component’s functionalities

TB-MOM-
001
(HIGH)

The Monitoring Manager
component should be able to
provide information about the
capabilities of each resource node.

MonitoringController class provides
startUxVConsumers() method which is
responsible for enabling the
consumption of Message Bus messages
from each resource node. Upon
reception of the message the current
status of the resource is calculated

TB-MOM-
002
(HIGH)

The Monitoring Manager
component should collect and
report current status of computing
resources of the testbed facilities

HealthStatusService class provides the
methods for reading the values of CPU,
memory and disk usage and assessing
the current testbed status

TB-MOM-
003
(HIGH)

The Monitoring Manager
component should store
periodically all testbed information

JDBC Connectors provide all necessary
functions for storing testbed and
resources statuses in permanent storage

TB-MOM-
004
(HIGH)

Testbed monitoring manager
should be able to transmit the
current status to the System
Monitoring Service.

HealthStatusService class implements
the fillHealthStatus() method
responsible for the production of the
Avro message TestbedHealthStatus and
transmits it to the Message Bus

TB-MOM-
005
(MEDIUM)

Monitoring Manager should be able
to communicate and collect
information from other services that
provide important information
related to the operation of testbed
facility

Monitoring Manager subscribes to
Message Bus topics that provide
information from other testbed services

 Final specification of functionalities and interfaces

The main functionalities of the Monitoring Manager are:
• Periodically check the current status of the available resources in the facility like battery

lifetime, CPU load, free storage volume, bit error rate, etc.
• Periodically check the status of the testbed facilities computing resources.
• Store the status of the testbed characteristics and the devices in a Database/data log.
• Transmit current status information to the System Monitoring Service through the

Message Bus
• Communicate with services running at testbed level like Network Controller and

Resource Controller

 D4.8 - Design and Specification of RAWFIE Components (c)

77

• Display and visualize the data of the monitored resources to the testbed operators in a
user friendly format. For this purpose it shares the same user interface with testbed
Manager Manager

Operations and Attributes
Monitoring Manager provides all necessary classes for receiving the current level of resources
for the nodes participating in experiments. After the initialization of the component
MonitoringController class starts the appropriate consumers of messages from UxV nodes like
current levels of fuel, CPU and storage volume upon which the current status of UxV nodes is
calculated. In parallel startHealthService method starts a periodic task in which the current levels
of the computing machine resources are measured and an overall status is calculated and
transmitted through the Message Bus in the relevant topic TestbedHealthStatus. Monitoring
Manager is equipped with the appropriate classes (HealthStatusDAO and UxVStatusDAO
respectively) that are responsible for interactions and queries with the permanent storage which
in this case is realized with the corresponding tables in the testbed local database. Visualization
of the results is achieved with the use of displayHealthStatus() and displayUxVStatuses()
methods of MonitoringView class which enable the presentation of the monitored resources in
the graphical user interface of the Testbed Manager. A high level class diagram of the
Monitoring Manager with its sub-components is presented in Figure 34.

 D4.8 - Design and Specification of RAWFIE Components (c)

78

Figure 34: Monitoring Manager - Class diagram

Required Interfaces

• Message Bus: Monitoring Manager interacts with the following components through
the Message Bus:

o System Monitoring Service: Monitoring Manager periodically transmits a
Testbed Health Status message which contains information about the
utilization of the computing resources of the testbed

o UxV Node: Monitoring Manager consumes messages which display resources
current levels during the execution of experiments like fuel usage, CPU usage,
storage usage.

• Local Database Repository (JDBC): Monitoring Manager reads and store information
in the database deployed at each testbed.

 Updated sequence diagrams

Interactions and Relationships with other components

 D4.8 - Design and Specification of RAWFIE Components (c)

79

The interactions of the Monitoring Manager with other components are presented in the
following sequence diagram.

1. Monitoring Manager collects periodically testbed status information, fills
TestbedHealthStatus message and transmits it to the Message Bus.

2. System Monitoring Service can load the data for the current status of the testbed after
subscribing to the relevant Message Bus topic.

3. Monitoring Manager reads messages sent from UxVs that are related to the current levels
of resources (FuelUsage, CpuUsage and StorageUsage messages)

4. Calculates their current status upon these values
5. Displays the result in the user interface.

In the diagram red colour is used to highlight the use of message bus for monitoring manager
components interactions marking the difference with the previous version of the architecture.

Figure 35: Monitoring Manager sent and received Message Bus messages

 D4.8 - Design and Specification of RAWFIE Components (c)

80

4.3.3 Network Controller
This paragraph describes the RAWFIE Network Controller component, starting from a brief
summary of the requirements. In particular, the design alternatives and implementation trade-offs
are explained so that it is possible to follow the decision path that led to the present component.

 Component requirements as identified in D3.3
The Network Controller manages the network connections and the switching between different
technologies in the testbed. For example if a problem occurs in the communication of the
resource with the RC and subsequently with the Experiment Manager on the RAWFIE
middleware, a fall-back interface is engaged. Through this procedure, the other networking
interface/device is enabled to avoid the uncontrolled operation of the mobile unit and associated
damages in the infrastructure. In addition this component is responsible for security issues. The
switching alternative can be also triggered by the executed experiment.

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

TB-NEC-001
(MEDIUM)

The RAWFIE
communication resources
shall be managed to offer
seamless connectivity in
the normal operations of
the system.

The Network Controller has access to the
Database where the metadata are available, as
well as to the measurements of the link quality
done by the UxV. Switching is automatic or
based on the experience. The Network Controller
is able to send commands to make the UxV
switch to a specific network interface.

TB-NEC-002
(MEDIUM)

Provision of network
communication resource

UXv and Testbeds offer various interfaces,
whose metadata are described in the Database.

TB-NEC-003
(MEDIUM)

Alternative
communication system

Same as TB-NEC-002. UxV may ultimately
operate as an autonomous swarm using the
Proximity component.

TB-NEC-004
(MEDIUM)

Management of the
communication system

See TB-NEC-001

TB-NEC-005
(MEDIUM)

Time constraint
verification and
notification

The Network Controller does not verify directly
that the time constraints are met. This
verification can be done externally by the
experiment on the basis of the measurements
done by UxV as well as temporal properties of
the data exchanged in the Kafka message bus.

 Final specification of functionalities and interfaces

Static data is to be located in the testbed manager data base. A table called net_interfaces
described all the available network interfaces, using an integer to identify them:

 D4.8 - Design and Specification of RAWFIE Components (c)

81

Table 1: net_interfaces testbed manager table

A second table named resource_net_interfaces defines the matching with the network interface
descriptions and the actual interfaces present on the UxVs:

Table 2: resources_net_interfaces table of the testbed manager data base

In the above table, the resource_id column identifies the UxV and net_interface_id matches the
same column of the net_interfaces table.

Dynamic data
Dynamic data is also reworked in the second iteration with new topic names and data format
definition. The dynamic data is described in Table 3 following the topic names definition below:

• NetwReportingPeriod – network performance reporting period for UxVs
• NetwSelectIf – select network interface command for UxVs
• NetwPerfUxV – UxV network connection performance reports
• GlobalNetwPerf – global network performance indicator

All fields of the records sent to the NetwPerfUxV topic are averages computed within the
window given by the reporting period.

Topic Param Desc Unit Type Publisher Subscriber
(s)

NetwReportingP
eriod

period network
performance
reporting
period

seconds int Network
Controller

UxVs

NetwSelectIf iface net_interface
_id of table
resources_net
_interfaces

- int Network
Controller

UxVs

NetwPerfUxV iface As above - int UxVs Network
Controller bitrate effective

uplink bitrate
Kb/s int

latency average time
until a post is
available on
the message
bus

ms int

rssi As given by dB(m) int

 D4.8 - Design and Specification of RAWFIE Components (c)

82

the network
interface card

security Whether the
message bus
connection is
secured or not

- bool

GlobalNetwPerf resource
name

Rawfie UxV
identifier
(canonical
name)

- string Network
Controller

Experiment
Controller

iface interface ID
as above

- int

indicator Network
performance
indicator

From 0
to 5

int

… Resource ID,
Interface ID
and
performance
indicator for
each UxV

…
…

Table 3: 2nd iteration dynamic data with topic names

 Updated sequence diagrams

The Network Controller interacts with the Resource Controller in order to acquire information
from the UxVs. The Monitoring Manager can also gather statistics for the network technologies
and status of the experiments.

The workflow of the Network Controller is the following:
- Wait for experiment start

o Subscribe to Kafka topic “ExperimentStartRequest”.
- Upon experiment start:

o Extract list of UxV’s canonical names
o For each resource, gather list of interface from the data base. Get the default interface
o Broadcast NetwReportingPeriod topic to set the reporting period.

- Subscribe to NetwPerfUxV topic
- Upon NetwPerfUxV message, update performance indicators, publish a GlobalNetwPerf

message
- Upon request to change the interface, authorise (or not) the change and publish NetwSelectIf.

 D4.8 - Design and Specification of RAWFIE Components (c)

83

4.3.4 Resource Controller
The core component of the navigation system is the Resource Controller which ensures the safe
and accurate guidance of the UxVs based on the user's preferences. Additionally, Resource
Controller commands each device to switch onboard sensors on and off.

4.3.4.1.1 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

TB-REC-001
(MEDIUM)

RAWFIE platform shall
support a semi-
autonomously way of
navigation of the UxVs

Navigation_Service will be responsible for this
feature.

TB-REC-002
(MEDIUM)

RAWFIE platform should
be able to activate the
“Emergency Scenario”

 Abort messages will be dispatched to all the
involving vehicles if any of the emergency
conditions are met. In the future, the
“Emergency Scenario” is going to be enriched
with more sophisticated events/actions.

TB-REC-003
(HIGH)

The Resource Controller
shall receive location
messages from the
vehicles at regular
intervals

 The Resource Controller receives location
messages containing the current position of each
operating UxV.

TB-REC-004
(HIGH)

The Resource Controller
shall transmit the next
location for the current
experiment to the vehicles

 Goto commands are transmitted to the
corresponding topic of each testbed. The
distinction between different UxVs is achieved
by the partitioning on the Kafka messages.

TB-REC-005
(HIGH)

The Resource Controller
shall be able to plan the
next location that will be
transmitted in the vehicle
taking into account the
locations of all UxVs that
are active in that testbed

 The Resource Controller transmits the new set
of waypoints only when all the UxVs have
reached the previously transmitted waypoints
(within a pre-specified radius of tolerance).

TB-REC-006
(HIGH)

For the experiment
accomplishment the
Resource Controller shall
operate in close
coordination with the
Experiment Controller

 The Resource Controller informs Experiment
controller about the progress of the ongoing
experiment with specialized status messages.

 Final specification of functionalities and interfaces

The main functionalities of the Resource Controller are:
• Resource Controller filters the messages from Experiment Controller and identifies the

experiments that have to be executed on its own testbed.

 D4.8 - Design and Specification of RAWFIE Components (c)

84

• Resource Controller is able to parse the EDL script and identify the desirable waypoints.
• Each one of these waypoints is dispatched to the appropriate Kafka partition in order to

be executed by the appropriate UxV.
• The communication protocol takes into account the location of all the UxVs in order to

send the next set of waypoints.
• The Resource Controller is able to detect and identify possible safety violations. If the

given instructions violate the safety constraints, the Resource Controller ignores these
directions and returns appropriate warning messages to the Experiment Controller.

• Resource Controller is able to activate and deactivate the available sensors in order to
control the measurements feed.

• Resource Controller sends distinct status messages informing the Experiment Controller
regarding the progress of the experiment’s execution.

Required Interfaces
• Resource Controller interacts with the following components through the Message

Bus:
o Experiment Controller: Resource Controller (RC) consumes

ExperimentStartRequest messages describing details of a new experiment.
Additionally, RC produces ExperimentStatusMsg messages to inform the
Experiment Controller about the progress of the ongoing experiment

o UxV node: RC consumes Location_TestbedName messages describing the
current location of all involved vehicles. RC also publishes
Goto_TestBedName and SensorPublishControl_TestbedName type of
messages informing about the desirable locations and the
activation/deactivation of available sensors, respectively. In case of
emergency, RC broadcasts Abort messages to all the operational UxVs.

o Experiment Monitoring Tool: Resource Controller consumes
ExperimentCancelRequest messages indicating the cancelation of an ongoing
experiment.

 D4.8 - Design and Specification of RAWFIE Components (c)

85

Figure 36 Resource Controller - Class Diagram

 Updated sequence diagrams

 D4.8 - Design and Specification of RAWFIE Components (c)

86

Figure 37 - Resource Controller - Sequence diagram

 D4.8 - Design and Specification of RAWFIE Components (c)

87

4.3.5 UxV Proximity component
This section presents the design of a low power wireless proximity component for the unmanned
vehicles (UxV) taking part to the Rawfie platform as an element of a Testbed. The main
objective of the proximity component is to allow members of a swarm of autonomous vehicles to
discover the existence and possibly interact with each other with very low latency without
depending on the Rawfie middleware or any other ground equipment.

 Component requirements as identified in D3.3
The table below shows RAWFIE requirements extracted from D3.2 for which the proximity
component is useful and helps satisfying.

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-NAV-T-
001
(HIGH)

This component will
provide to the user the
ability to remotely
navigate a squad of UxVs
through a user friendly
interface.

Neighbours detection, identification, distance
estimation, collision avoidance, navigation
(heading)

TB-NEC-003
(MEDIUM)

Alternative
communication system

Implements the alternative communication
system, relay for UxV’s disconnected from the
main network (communication services)

TB-NEC-004
(MEDIUM)

Management of the
communication system

Signals strength measurement on the proximity
radio interface, diffusion of primary radio
interface link quality status (self checking,
management services)

TB-REC-002
(MEDIUM)

RAWFIE platform should
be able to activate the
“Emergency Scenario”

Use the proximity component to find or
communicate with a lost UxV (beaconing and
emergency services)

TB-REC-003
(HIGH)

The Resource Controller
shall receive location
messages from the
vehicles at regular
intervals

The Proximity component exposes the perceived
neighbourhood information in the report sent to
the Resource controller (neighbourhood
information service)

UXV-NET-
002
(MEDIUM)

UxVs should be able to
Synchronize their Time-
References between them.

Time synchronisation using the proximity
component (synchronisation service) in case of
failure of the primary communication interface.

UXV-NET-
004 (HIGH)

Each UxV node shall be
equipped with primary and
secondary communication
means.

Secondary communication interface, redundancy
(RAWFIE communication services)

UXV-NET-
005
(MEDIUM)

UxV network interface
management

The proximity component will provide a
management interface (management services)

UXV-NET- Neighbouring UxV Neighbours detection, distance or proximity

 D4.8 - Design and Specification of RAWFIE Components (c)

88

008
(MEDIUM)

monitoring estimation, publication of position and speed
vector as well as status (Neighbour monitoring
services)

UXV-NET-
009 (HIGH)

Each UxV node should be
able to send navigation
state feedback with at least
2 Hz frequency and
maximum 1 sec latency
when within radio
communication reach.

Navigation information publication for the
neighbourhood with strict real time constraints
(real-time communication services for
exchanging navigation

UXV-PRC-
001 (HIGH)

Each UxV shall be able to
operate autonomously.

Enables autonomous operation in swarms.

UXV-PRC-
002
(MEDIUM)

The UxV should provide
collision avoidance
mechanism

Neighbours detection, distance or proximity
estimation, publication of position and speed
vector, distance estimation (anti-collision
service)

UXV-PRC-
004
(MEDIUM)

UxVs should be able to
cooperate during the
execution of an
experiment.

Direct, real time communication between
neighbouring UxV’s

 Final specification of functionalities and interfaces
Functional architecture

The proximity component is made of two elements: the Delegate and the Head. The Proximity
Delegate acts as a proxy to the proximity component for the local Proximity Component client
(actually abstracted by the Delegate). It is named “Delegate” to avoid the alliterative “Proximity
Proxy” combination. The following subsections describe the respective responsibilities of the
Proximity elements. The Proximity Head is the active part of the component, which handles the
subscription requests and publications issued by the Delegate.

Proximity Delegate

The Proximity Delegate interacts with the other UxV components and forwards their requests
and data to the Proximity head over a serial line. In the downlink direction, subscriptions from
the UxV Node are translated from the Rawfie middleware world (Kafka) into a more compact
format accepted by the proximity component protocol. Data publications are filtered with respect
to content, context and delivery specifications. In the uplink direction, the Proximity Delegate
receives subscriptions from other vehicles sent-up by the Proximity Head and translates them
into Rawfie middleware subscriptions by subscribing to the related topics. The same is done with
uplink data which is translated and published within the primary Rawfie “world”.

Proximity Head

The Proximity Head executes the Publish-Subscribe protocol, forwards uplink subscriptions
(coming from other UxVs) to the Proximity Delegate and transmits publications submitted by the
Proximity Delegate (thus from the UxV). The Proximity Head also manages subscriptions made

 D4.8 - Design and Specification of RAWFIE Components (c)

89

by its own UxV through the Delegate and filters incoming uplink traffic accordingly before
sending it up to the delegate.

Figure 38: UxV Node architecure with Proximity component. Dotted line boxes represent hardware. Continuous line

boxes represent software components.
Services

The proximity component offers a generic public-subscribe service on a secondary, local short
range radio module. The topics that can be published by the proximity component will have to
comply with some maximal size and throughput constraints. The interface with the UxV shall be
able to describe what is acceptable to publish under which constraints at any given time.

Among the topics likely to be published by the proximity components are:

• UxV identification,

• Position,

• Speed vector,

• Perceived neighbourhood such as the signal strength received on the Proximity
component radio for qualitative or quantitative distance estimation,

• Status of the internal components of the UxV, mode, etc.

• Sensor readings.

The most used topics will be published (i.e. broadcasted) spontaneously, maybe on a regular
basis (cyclically). Other, possibly user defined topics will be managed through subscriptions. A
proximity component shall be able to publish topics generated by the other UxV components or
by itself such as:

• Neighbourhood information, statistics on appearance/disappearance

• Communication statistics (packet rates, protocol mechanisms, errors, uptime, latencies,
etc.)

 D4.8 - Design and Specification of RAWFIE Components (c)

90

Additionally some wireless sensors compatible with the proximity component may be deployed
off the vehicles (on the ground, on/in the water) and their data gathered by UxV’s passing by.

Interfaces

The proximity component has to satisfy the following requirements regarding its interface with
the UxV components in order to fulfil its functional requirements:

• Translate subscriptions received from other nodes through the proximity component radio
interface and forward them to the UxV “client” of the proximity component.

• Subscribe to and receive topics published by the other UxV components.

• Access to some UxV component properties such as identifier, status, etc…

• Allows the local UxV client for subscribing to proximity component topics published by
other UxVs.

• Forward data received from the proximity component radio interface to the local UxV
client that has subscribed to it.

The following interface is provided by the proximity component.

• Manage and configure the proximity component parameters,

• Publish and subscribe to proximity topics (topics published by individual drones, such as
status, estimated distance for a pair, UxV speed or altitude, etc.),

• Communication statistics (packet rates, protocol mechanisms, errors, uptime, latencies,
etc.)

• Publish and subscribe to status of individual UxV’s and groups of UxV’s,

• Publish and subscribe to user defined topics

• Notification of various events using dedicated topics: appearance and disappearance,
distance thresholds reached, etc.

The Proximity component requires the following interface to be integrated into a system. The
management interface is made of:

• Register, unregister

• Start and stop the proximity component

• Publish topic, subscribe to topic

The filter interface could be of the type setFilter, getFilter or filters/operators can be attached to
subscriptions.

The interface between the UxV and the proximity component shall be OS-agnostic.

 D4.8 - Design and Specification of RAWFIE Components (c)

91

4.3.6 Testbed Manager
The Testbed Manager is responsible for the administration of the devices of each one of the
federation testbeds as well as the operational control of all testbed components needed for the
successful execution of each experiment.

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

TB-MAN-
001
(HIGH)

Testbed Manager shall
support permanent storage
of all testbed attributes and
resources attributes that
belong to testbed

A local database is implemented at local level
with all Testbed Manager classes having access
to it

TB-MAN-
002
(HIGH)

Testbed Manager shall
provide information about
the capabilities of each
resource node

The capabilities of each resource node are
presented through ShowUxVDetails() of UxV
class

TB-MAN-
003
(HIGH)

Testbed Manager shall
check periodically the
status of all other services
running at testbed level

Testbed Services class implements this
functionality

TB-MAN-
004
(HIGH)

Testbed Manager shall
contain a registration log
for all the experiments
executed in the testbed

 JDBC Connector implemented in the
Experiment class enables writing in the
permanent storage (local database) for all the
experiments

TB-MAN-
005
(HIGH)

Testbed Manager shall be
periodically informed
about the status of all
running experiments in the
testbed

Testbed Manager receives periodically the status
of all running experiments from Resource
Controller through Message Bus after
subscribing to ExperimentStatusMsg topic

TB-MAN-
006
(MEDIUM)

Testbed Manager shall
store configuration
parameters for the UxVs in
the relevant testbed

This functionality is provided from
configureUxV() operation of the Experiment
class

TB-MAN-
007
(HIGH)

Testbed Manager shall
implement a user interface
to support the interactions
between testbed operators
and machines

UxV class provides the ability to add and
remove resources (addNewUxV() and
removeUxV())

TB-MAN-
008
(HIGH)

Testbed Manager shall be
capable to handle
temporary interruption of
communication and store
data locally in case of

 OBSOLETE
This functionality will be inherently supported
from Message Bus

 D4.8 - Design and Specification of RAWFIE Components (c)

92

transmission failure
TB-MAN-
009
(LOW)

Testbed Manager may
provide statistical
data/information about
testbed operation

Statistics class provides this functionality

TB-MAN-
010
(HIGH)

Testbed Manager shall
provide the ability to
cancel an ongoing
experiment in
case of communication
failure with the RAWFIE
platform

Experiment class provides cancelExperiment()
method which enables Testbed Manager to
transmit an ExperimentCancelRequest message
and cancel the execution of an ongoing
experiment

 Final specification of functionalities and interfaces

The main responsibilities of the Testbed Manager are:
• Provide a graphical user interface through which a user can add new testbed resources

and view the capabilities of each resource node. Monitoring Manager uses the same
interface for monitoring the usage of UxV and testbed resources

• Call the REST methods of the Testbed Directory Service when adding, updating or
deleting resources to make consistent the content of local and master repositories

• Keep a registration log for all the experiments in the relevant testbed
• Periodically check the status of all other services running at testbed
• Store configuration parameters for the UxVs in the relevant Testbed
• Provide statistical information for the testbed usage
• Provide the required interfaces to interact with SFA Aggregation Manager

The structure of Testbed Manager is depicted in the class diagram of Figure 39, where the
associations and operations of its core classes are presented. A permanent storage in the form of
a local database is implemented at testbed level and classes are enabled to access it for activities
where permanent storage is needed. The component contains the UxV class through which the
testbed operator can add and delete resources and view the exact details of each resource
registered in the testbed. Through the SFA AM Driver class these resources are transformed in
SFA-compliant format and communicated to the SFA Aggregate Manager component which is
responsible for the SFA-based federation of RAWFIE Testbeds.
Testbed Manager is also responsible to call the REST methods of Testbed Directory Service
when creating or editing a resource or when recognizing that testbed is not registered in the
Master Repository ensuring this way that the information of local and master repositories is
consistent.
The Experiment class of Testbed Manager is responsible to register each new experiment locally
taking the information provided from Experiment Controller after the validation of the
experiment through Message Bus communication. Beyond of storing the details of the new
experiment in the local database Experiment class receives the status from Resource Controller
at regular intervals containing information about the experiment progress and logs locally the
start and stop as well as all significant events of the experiment. The Experiment class provides
also the ability to cancel an ongoing experiment from the local interface in emergency cases
where RAWFIE platform is inaccessible or where abnormal behavior detected.

 D4.8 - Design and Specification of RAWFIE Components (c)

93

The Testbed Services class is responsible to collect the status of all the other components that run
at testbed, inform the platform about the overall status and take the appropriate actions in cases
of non-responding components. The Statistics class can present information about the utilization
of the testbed or specific resources in user defined temporal intervals. Testbed Manager is
designed as a desktop application equipped with Graphical User Interface and
TestbedManagerView class is responsible for the visualization of all the relevant information in
a user friendly format.

Figure 39: Testbed Manager - Class diagram

Required Interfaces
• Message Bus: Testbed Manager interacts with the following components through the

Message Bus:
o Experiment Controller: Testbed Manager consumes the messages indicating

the start of a new experiment
o Resource Controller: Testbed Manager consumes messages indicating the

progress of ongoing experiments
• Local Database Repository (JDBC): Testbed Manager reads and store information in

the database deployed at each testbed.
• Testbed Directory Service: Testbed Manager interacts with this component in order to

synchronise the content of the Master Data Repository with the content of the local
testbed database

 D4.8 - Design and Specification of RAWFIE Components (c)

94

 Updated sequence diagrams
The sequence diagram of Figure 40 presents sequence of actions related to experiment handling
at testbed level with red color used to highlight the differences from the previous version of the
architecture:

1. Testbed Manager receives an ExperimentStartRequest message from platform Message
Bus

2. insertNewExperiment() operation is called to write all required information about the
new experiment in the local database

3. Testbed Manager receives periodically an ExperimentStatusMsg message about the
current status of the experiment from Resource Controller and updates the experiment
based on the last information received

4. In case needed an ExperimentCancelRequest message can be transmitted from the user
interface of the application which cancels the experiment execution. This message is also
consumed from the Resource Controller which is responsible for the safe return of UxV
resources participating in the experiment

5. A user can see information about all the experiments that have been executed in the
testbed using application’s GUI

Figure 40: Testbed Manager - Experiment handling sequence diagram

4.3.7 SFA Aggregate Manager

SFA Aggregate Manager (AM) allows testbeds to securely expose their resources to the
federation and enables users to reserve them by exchanging XML RSpecs files. An RSpec lists
information about the resources (nodes) of each testbed formed in an XML format.

 D4.8 - Design and Specification of RAWFIE Components (c)

95

 Component requirements as identified in D3.3

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

TB-AGG-
001

SFA Aggregate Manager
(SAM) should provide an
SFA Interface to comply
with SFA based testbeds
or testbed federations

It is part of the communication layer using a
REST API and a XML-RPC interface

TB-AGG-
002

SFA Aggregate Manager
(SAM) should provide a
REST API to comply with
RAWFIE testbeds

A REST API is implemented to support the
discovery, reservation, provision and release
functionality of RAWFIE resources

TB-AGG-
003

SFA Aggregate Manager
(SAM) should advertise
the resources of a testbed

It is part of the communication layer

TB-AGG-
004

SFA Aggregate Manager
(SAM) reservation process
should comply with the
resource reservation
process of RAWFIE
testbeds

Management layers is responsible for the
reservations and the release of RAWFIE
resources.

TB-AGG-
005

SFA Aggregate Manager
(SAM) should provide an
interface to testbed
administrators for
managing RAWFIE
testbeds

Supported by REST API (getinfo, create, update
and remove methods)

 Final specification of functionalities and interfaces

The SFA Aggregate Manager (SAM) architecture follows design principles which were formed
by taking into consideration all the desired features that a manager framework should provide.
As depicted in Figure 41, the resulted framework is divided in several fundamental architectural
components, each of which possesses significant role in a specific problem area of the facility
management; (i) the communication interfaces which facilitate the communication with external
actors, followed by the (ii) authentication/authorization context which acts as a security
intermediary between the internal system and the outside world; (iii) the management layer
where most of the framework’s intelligence is accumulated, including the orchestration of the
supported functionality to fulfill a requested action and the required database transactions.

 D4.8 - Design and Specification of RAWFIE Components (c)

96

Figure 41: Aggregate Manager architectural components

Communication Layer
One essential characteristic of the presented management framework is its versatility in terms of
communication interfaces or else APIs. In our implementation, two major communication
interfaces are utilized. Initially the custom REST API is developed to facilitate support of the
experiment’s lifecycle while leveraging semantically-enriched resource descriptions. Next to
that, an XML-RPC API has also been implemented supporting SFA, one of the widely-used
protocols in the field of testbeds, thus enabling interoperability with existing testbed
management platforms.
(Semantic aware) REST API: The REST API is tailored to support the discovery, reservation,
provision and release functionality of RAWFIE resources. It leverages the OMN-based [12]
resource descriptions stored in the local Semantic Graph Database, to provide the
users/experimenters with semantically enriched information regarding the resources managed by
the respective testbed. Thus the users are able to allocate and provision resources that correspond
to their experiments’ specifications, as well as release these resources when no longer used.
Complementary to this functionality, this API exposes the essential administrative management
methods; namely, RAWFIE resource description retrieval, creation, update and deletion are
supported.
(SFA enabled) XML-RPC API: This API is exposed by the AM in order for the SAMANT
platform (details about the SAMANT project and its integration in RAWFIE in the D4.7) to be
interoperable with existing SFA [13] enabled provisioning tools (e.g jFED, omni) and to allow

 D4.8 - Design and Specification of RAWFIE Components (c)

97

federation with existing testbed management platforms that confront with the SFA and the GENI
API v3 specification [14]. Backwards compatibility with GENI AM API v2 is also present,
allowing our framework to be reachable not only by tools that are compatible with the latest API,
but also by tools that are compatible with v2 AMs. Throughout the XML-RPC API, multiple
arguments and returns are labelled as an RSpec18. This resource specification is the primary data
structure used within the API and follows a specific set of schemas.
Authentication/Authorization Layer
The authorization and authentication system is of paramount importance to any testbed
management framework and the SAMANT platform is no exception. The implemented
Authentication/Authorization (A/A) module is where requests invoked in the communication
layer are granted approval (or denied respectively), subject to the credentials submitted by the
experimenter. Each of the APIs exposed in the communication layer, utilizes its own dedicated
mechanism of handling credentials, which can be configured to authenticate the experimenters,
thus determining their privileges (authorization).
The aforementioned experimenter privileges are derived through client side X.509 certificates, in
all the interfaces, and are assigned to members of testbeds federated with the given testbed
(“certificate authorities”). However, these certificates’ structure alternates whether they are
targeted at the REST or the SFA communication interface, in a way that they contain distinct
attributes meant to be handled by interface-specific methods. To illustrate this specificity, the
SFA X.509 certificates use an extension in order to provide a uniform resource name (URN),
which enables the testbed Aggregate Manager to link an associated SFA request to a specific
experiment. Following the privileges extraction, it is then designated whether the user is
permitted to (i) Retrieve, (ii) Create, (iii) Modify or (iv) Release a RAWFIE (a) Resource, (b)
Account or (c) Reservation. More specifically, alongside each request comes a signed XML file
containing the user’s privileges, guiding the A/A module to map them with the abovementioned
permitted actions.
Management Layer
Τranslator: In order to support federation with SFA testbeds, which use legacy data formats, it is
necessary the API method calls and the respective semantic descriptions to be translated into the
respective SFA data models/formats. This component was initially implemented to help
developers work with Open-Multinet related ontologies and was included in the OMN suite.
During the SAMANT project which was submitted in the 1st Round of Open Calls initiative, it
was extended to support the ontology developed specifically to fit the RAWFIE requirements. In
particular, this integration of the omnlib Translator with the SAMANT platform provides support
for translating locally used GENI RSpecs (structured data models) into RDF-based graphs and
back. The main advantage of this approach is the automation and speed up of conversion of data
that is not using RDF, while ensuring that the quality of the generated RDF data corresponds to
its counterpart data in the original system.
Scheduler: The Scheduler component is the provider of the main functionality of the system,
since it is the part where decisions regarding resource reservation take place, based on their
availability. More specifically, when a request for booking a resource is received, it is forwarded
to the Scheduler component via the Inventory Manager; firstly the Scheduler compares the
requested booking’s start and expiration time with those of the existing, active reservations.
Afterwards, it decides based on possible timeslot conflicts and while taking into account the
authorization context, whether to fulfill the request or reject it. A simple First-Come-First-Served
(FCFS) policy is applied to the requests for resource reservation. However, with minor

 D4.8 - Design and Specification of RAWFIE Components (c)

98

modifications in the Scheduler component, testbeds administrators are able to define their own
resource allocation policies (e.g. implementing a user role/status policy).
Inventory Manager: The manager is where all the RAWFIE related policies and resource
management is concentrated. Requests regarding resource discovery, booking and reservation,
resource provisioning and release (i.e. user tasks), as well as resource description retrieval,
creation, update and deletion (i.e. administrative tasks) are forwarded to the Inventory Manager.
This component facilitates the orchestration and coordination of the actions required to fulfill the
aforementioned requests. These actions include, but are not limited to, forwarding the received
GENI RSpec to the Translator and receiving the respective Semantic description (and vice-
versa), consulting the Scheduler about the feasibility of booking the requested resources,
manipulating proper objects which achieve compliance with the established Data Models and
storing/retrieving them to/from the GraphDB triplestore, formulating responses and directing
them back to the message bus. Throughout the whole process, the manager constantly addresses
the authentication Layer in order to access policy-sensitive content and perform policy-sensitive
tasks.
Reasoning Engine: Ιts main function lies in the deduction of implicit knowledge based on
explicit statements stored inside the Triplestore. This extended knowledge may become
permanently stored or leveraged to assert miscellaneous requests received.

 Updated sequence diagrams
GetVersion

Figure 42: Aggregate Manager - Get SFA-API version sequence diagram

Figure 42 describes the process of retrieving the version of the SFA-API that current
implementation of AM supports. The AM provides this functionality through the XML-RPC API
where the system responds with an XLM RSPEC reply but also through the REST API where the

 D4.8 - Design and Specification of RAWFIE Components (c)

99

system responds with a semantic modelled reply. In both cases the replied version is stored in the
API implementation code and no need for further interactions with the back end are necessary.
There is no need for user authentication in order to perform this call.
List resources

Figure 43: Aggregate Manager - retrieve resources information using REST-API sequence diagram

Figure 43 describes the process where the experimenter retrieves information about the resources
of a specific testbed. The experimenter can provide criteria in the request and retrieve resources
based on their availability and their allocation status. Regarding the call handled by the REST-
API, first certificate based user credentials are validated in order the system to identify if the user
has the respective rights to perform the information retrieval action for the specified testbed. If
this is the case, the request is then forwards to the Aggregate manager that retrieves the
information from the triple-store graph database. The results are then serialised based on JSON
for Linking Data (JSON-LD) format and returned to the service consumer.
	

Figure 44: Aggregate Manager - retrieve resources information using XML-RPC API sequence diagram	

 D4.8 - Design and Specification of RAWFIE Components (c)

100

	
In case the call is handled by the XML-RPC API (supporting an SFA compatible request) the
overall subsequent steps are similar except from the fact that the retrieved semantic information
objects are translated to the adequate RSPEC-XML format (Figure 44).
Allocate resources

Figure 45: Aggregate Manager - allocation of resources through REST API

Figure 45 describes the process where the experimenter allocates resources. This process is
feasible to be performed through the REST-API where the respective information is modelled
based on semantics or through the XML-RPC where the overall call is compatible with the SFA
standard. In both cases, the first step is to authenticate the service consumer and to validate the
respective authorisation rights in order to perform the sliver creation process. Then the
Aggregate Manager analyses the semantically described request and initially verifies, through the
Scheduler component, that the requested resources are available for the issued time frame. It
should be noted that Scheduler loads all active reservations, upon AM initiations, and hence no
interaction with the database is necessary. If the resources are available, then the Aggregate
manager updates the Graph database with the new reservation and replies to the service
consumer with the descriptions of the resources along with the reservation id.

 D4.8 - Design and Specification of RAWFIE Components (c)

101

Figure 46: Aggregate Manager - allocation of resources through XML-RPC API

The handling of the request by the XML-RPC API (Figure 46) is similar with the described
process but differentiates in two main points. The XML-RSPEC request is first translated to the
respective OMN semantic description. Then it is feasible to be handled by the same Aggregate
Manager’s mechanisms as these described for the REST-API calls. In a similar manner, after a
successful reservation request, AMs reply is translated to the respective XML-RPC reservation
RSPEC.
Manage resources
Figure 47, Figure 48 and Figure 49 describe the process where the client creates, updates and
retrieves data object describing the testbed’s resources. This functionality is expected to be
utilised by the testbed administrator (not the experimenter). This functionality is only available
through the REST-API and all data are modelled based on OMN ontology. The call is escorted
with the respective semantic descriptions of the targeted resources. After the processing of the
provided certificate and the successful authentication and authorisation process the Aggregate
Manager performs the necessary updates to the Graph database. Depending on the type of call
(create, update, delete) the respective actions are performed. The system replies with an OMN
modelled data object describing the entities that the action performed on.

 D4.8 - Design and Specification of RAWFIE Components (c)

102

Figure 47: Aggregate Manager - create resource sequence diagram

Figure 48: Aggregate Manager - update resource sequence diagram

 D4.8 - Design and Specification of RAWFIE Components (c)

103

Figure 49: Aggregate Manager - retrieve resource sequence diagram

4.3.8 UxV Node

The UxV Node is a mobile system that interacts with the other Testbed entities (proxy, other
UxV’s). It can be remotely controlled or able to act and move autonomously, as programmed
before the start-up of the experiment or as programmed during the execution of the experiment,
e.g. in real-time. A UxV node interacts with the other RAWFIE components through the
Message Bus, using the RAWFIE protocol defined in the remainder of the section, which
conveys message according the AVRO structures (see D4.5). Examples of the implementation on
two different platforms are given at the end of this section.
The basic requirements a generic UxVs Node should satisfy, in order to make it possible to use it
within the RAWFIE platform (to “plug-in” within an existing Testbed, for example), have been
identified by the consortium partners and are listed in Table 4.
For more detailed information on the UxV Node component specifications in RAWFIE, further
to the updates provided in this and in the following subsection, please refer to section 4.3.8, 4.3.9
and 4.3.10 of D4.5.

 D4.8 - Design and Specification of RAWFIE Components (c)

104

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

UXV-GEN-
001
(HIGH)

Compliance of UxV to
RAWFIE specification and
interfaces

Two distinct components implement a translator
between different UxV protocols and the
RAWFIE UxV message format

UXV-GEN-
002
(LOW)

UxV providers may
provide for their supplied
devices a
simulator/emulator
mimicking its real-world
behavior and kinematics

Two simulation engines were deployed
mimicking the behavior of ROBOTNIK and
MST UxVs

UXV-NOD-
001
(HIGH)

Each UxV shall have a
unique Identification code.

Each UxV was assigned a unique identification
code and canonical name. These identification
tokens are used to communicate with the
message bus

UXV-NOD-
002
(HIGH)

Each UxV node should
ensure a minimum
autonomy of 15-30
minutes.

ROBOTNIK and MST UxVs have an autonomy
greater than 4 hours

UXV-NOD-
003
(HIGH)

Each UxV node should
ensure payload.

ROBOTNIK and MST UxVs are equipped with
several payload sensors

UXV-NOD-
004
(MEDIUM)

Each UxV node may
register the Coordination
Reference System CRS it
is expected to operate.

ROBOTNIK UxVs use a relative Cartesian
coordinate system and MST UxVs use WGS 84
coordinates

UXV-NOD-
005
(HIGH)

A proper message
communication protocol
should be defined for the
communication between a
UxV node and the testbed
ground components

The RAWFIE UxV Message Protocol addresses
this requirement

UXV-NOD-
006
(HIGH)

All command messages
received by the UxVs
should be ensured that
they originate from an
authorized testbed
component or other UxV
involved in an experiment
before being processed

This requirement is not currently addressed by
any UxV component

UXV-INT-
001
(HIGH)

All messages of the UxV
Message API should
contain in their header
basic information about
the dispatching entity.

The RAWFIE UxV Message Protocol addresses
this requirement

UXV-INT- UxV should support the ROBOTNIK and MST protocol translators

 D4.8 - Design and Specification of RAWFIE Components (c)

105

002
(HIGH)

Goto command address this requirement

UXV-INT-
003
(MEDIUM)

UxV should support the
KeepStation command

ROBOTNIK and MST protocol translators
address this requirement

UXV-INT-
004
(HIGH)

UxV should support the
Abort command

ROBOTNIK and MST protocol translators
address this requirement

UXV-INT-
005
(HIGH)

UxVs should be able to
advertise themselves to the
RAWFIE infrastructure

ROBOTNIK and MST protocol translators
address this requirement

UXV-INT-
006
(HIGH)

UxVs should be able to
advertise information
about their sensors to the
RAWFIE infrastructure

ROBOTNIK and MST protocol translators
address this requirement

UXV-INT-
007
(MEDIUM)

UxVs should be able to
inform testbed about their
CPU usage

ROBOTNIK and MST protocol translators
address this requirement

UXV-INT-
008
(HIGH)

UxVs should be able to
inform testbed about their
on-board storage

ROBOTNIK and MST protocol translators
address this requirement

UXV-INT-
009
(HIGH)

UxVs should be able to
inform testbed about their
fuel storage

ROBOTNIK and MST protocol translators
address this requirement

UXV-INT-
010
(HIGH)

UxVs should be able to
inform testbed about their
orientation (attitude)

ROBOTNIK and MST protocol translators
address this requirement

UXV-INT-
011
(MEDIUM)

UxVs should be able to
inform testbed about their
velocity and acceleration

ROBOTNIK and MST protocol translators
address this requirement

UXV-INT-
012
(HIGH)

UxVs shall periodically
publish a digest of their
scalar sensor readings

ROBOTNIK and MST protocol translators
address this requirement

UXV-PRX-
001
(HIGH)

Embedded UxV proximity
component shall be into
the UxV

MST UxVs are equipped with the UxV
Proximity Component

UXV-NET-
001
(MEDIUM)

Capability of taking the
control of the UxVs from
distance.

ROBOTNIK and MST protocol translators
address this requirement

UXV-NET-
002
(MEDIUM)

UxVs should be able to
Synchronize their Time-
References between them.

MST UxV clocks are synchronized and
disciplined using GPS receivers

UXV-NET-
004
(HIGH)

Each UxV node shall be
equipped with primary and
secondary communication
means.

MST UxVs are equipped with Wi-Fi (primary
communication mean) and GSM (secondary
communication mean)

 D4.8 - Design and Specification of RAWFIE Components (c)

106

UXV-NET-
005
(MEDIUM)

UxV network interface
management

UXV-NET-
006
(MEDIUM)

UxV communication
interoperability with
RAWFIE (incoming)

ROBOTNIK and MST protocol translators
address this requirement

UXV-NET-
007
(MEDIUM)

UxV communication
interoperability with
RAWFIE (outgoing)

ROBOTNIK and MST protocol translators
address this requirement

UXV-NET-
008
(MEDIUM)

Neighboring UxV
monitoring

ROBOTNIK and MST protocol translators
address this requirement

UXV-NET-
009
(HIGH)

Each UxV node should be
able to send navigation
state feedback with at least
2 Hz frequency and
maximum 1 sec latency
when within radio
communication reach.

ROBOTNIK and MST protocol translators
address this requirement

UXV-NET-
010
(HIGH)

The primary
communication channel of
the node should support
IPv4/IPv6 protocol stack.

ROBOTNIK and MST UxVs and protocol
translators are currently using the IPv4 protocol
stack

UXV-SEN-
002
(HIGH)

Each UxV node shall be
able to list the available
sensors

ROBOTNIK and MST protocol translators and
the RAWFIE UxV Message Protocol address
this requirement

UXV-SEN-
003
(HIGH)

UxV location and sensor
data should be made
available to the
experimenter

ROBOTNIK and MST protocol translators and
the RAWFIE UxV Message Protocol address
this requirement

UXV-SEN-
004
(HIGH)

Location sensors should be
supported in each UxV
unit and can be used
remotely during testbed
demonstrations.

ROBOTNIK and MST protocol translators and
the RAWFIE UxV Message Protocol address
this requirement

UXV-SEN-
005
(HIGH)

UxVs should sent a
notification to the
Resource Controller when
they reach the desired
location

ROBOTNIK and MST protocol translators and
the RAWFIE UxV Message Protocol address
this requirement

UXV-STO-
001
(HIGH)

UxVs shall be able to store
data on board.

Persistent on-board storage is provided my all
UxVs

UXV-STO-
002
(HIGH)

UxVs shall provide a
management tool of the
available storage.

ROBOTNIK and MST provide software tools to
manage UxV storage

 D4.8 - Design and Specification of RAWFIE Components (c)

107

UXV-STO-
003
(HIGH)

UxVs shall provide an
authorized access to the
data management tool.

UXV-STO-
004
(HIGH)

UxVs shall provide a data
log.

Logging to persistent storage is implemented in
all UxVs

UXV-STO-
005
(MEDIUM)

UxVs may provide an
automated syncing of
servers.

UXV-PRC-
001
(HIGH)

Each UxV shall be able to
operate autonomously.

ROBOTNIK and MST UxVs are equipped with
on-board autonomy

UXV-PRC-
002
(MEDIUM)

The UxV should provide
collision avoidance
mechanism.

UXV-PRC-
003
(MEDIUM)

Capability of task planning
of the UxVs nodes during
run-time.

ROBOTNIK and MST protocol translators and
the RAWFIE UxV Message Protocol address
this requirement

UXV-PRC-
004
(MEDIUM)

UxVs should be able to
cooperate during the
execution of an
experiment.

UXV-PRC-
005
(HIGH)

Each UxV node shall be
able to keep position while
waiting for new
instructions

ROBOTNIK and MST protocol translators and
the RAWFIE UxV Message Protocol address
this requirement

UXV-PRC-
006
(MEDIUM)

UxVs shall be capable of
processing sensor data in
order to summarize large
sensor data-sets.

The DigestLogging task of MST UxVs addresses
this requirement

UXV-MGT-
001
(HIGH)

UxVs shall offer on
demand resources
(Network, Sensor,
Processing, and
Controller).

UXV-MGT-
002
(HIGH)

UxV shall be capable to
revert to a safe mode

ROBOTNIK and MST protocol translators and
the RAWFIE UxV Message Protocol address
this requirement

UXV-MGT-
003
(HIGH)

UxV shall be capable to
restart its internal
components independently

ROBOTNIK and MST on-board software are
capable of fulfilling this requirement

UXV-MGT-
004
(HIGH)

UxV shall be capable to
monitor the health of its
components and provide
appropriate health status
messages to the testbed

ROBOTNIK and MST on-board software are
capable of fulfilling this requirement

 D4.8 - Design and Specification of RAWFIE Components (c)

108

UXV-MGT-
005
(HIGH)

UxV shall be capable to
enable/disable certain
internal components

ROBOTNIK and MST on-board software are
capable of fulfilling this requirement

UXV-MGT-
006
(HIGH)

UxV shall be capable to
offer safe maintenance
access for manufacturers

ROBOTNIK and MST UxVs are capable of
fulfilling this requirement

Table 4: List of requirements for an UxV node to be used in RAWFIE

 The RAWFIE UxV Protocol

The RAWFIE UxV Protocol was devised to abstract the differences between UxVs and expose a
simple, compact, extensible, and expressive interface to monitor and control UxVs in a platform-
agnostic way. New UxVs can therefore be added to the RAWFIE infrastructure by creating
adapters or translators to convert UxV specific information to the RAWFIE UxV Protocol.
Detailed information about the UxV protocol and different type of messages are reported in
D4.5. In the following we report the structure of the SensorPublishControl message, which was
not presented in the former deliverable D4.5.

• Sensor Publish Control

This message enables/disables publishing of specific sensor data to the message bus.

Field Units Description
Module - Canonical name of the controlled module
Quantities - List of quantities
Enabled - True to enable publishing, false otherwise

5 Global Sequence diagrams showing main RAWFIE processes
In the following sub-sections, updated sequence diagrams for some of the most relevant
RAWFIE use cases, involving different software components of the RAWFIE platform, are
depicted and explained.

5.1 Registration of Testbed Resources
The sequence diagram in Figure 50 shows a sample information flow with the components
involved in registration of a new resource in a specific, already registered, Testbed. The
registration of a new resource is considered as a triple storage process that starts from the
Testbed Manager application running at testbed level and targets the master repository located in
the appropriate server and SFA and local repositories located within each testbed itself.

1. Testbed Administrator opens the Testbed Manager application and enters his login
credentials

2. After successful login Testbed Administrator selects the resources screen while all
testbed resources and their capabilities are displayed

3. Testbed Administrator presses the New button and fills all the parameters that describe
the resource

 D4.8 - Design and Specification of RAWFIE Components (c)

109

4. When the Save button is clicked Testbed Directory Service is conducted (createResource
REST method) and the new resource information is stored in the Master Data Repository.
Testbed Directory Service should ensure that the call is initiated by a properly authorized
user with Testbed Administrator role

5. Using Aggregate Manager’s SFA REST API the information for the new resource is
stored in the triple-store database for SFA compliant resources located in the testbed

6. The new resource information is stored in the local repository used by Testbed Manager
7. A message about the success of the whole operation is returned to the user, In case of

failure in any intermediate step all appropriate actions are performed to undo the new
insertion

8. Steps about editing or deleting the resource follow the same procedure (not shown in the
diagram)

 D4.8 - Design and Specification of RAWFIE Components (c)

110

Figure 50: Sequence Diagram of "Registration of Testbed Resources" proces

 D4.8 - Design and Specification of RAWFIE Components (c)

111

5.2 Booking Testbed Resources
The sequence diagram below depicts the sequence of actions involved in a successful booking
resource request. Booking resource request is implemented as a two step process requiring a
confirmation form a testbed authority:

1. The Experimenter loads the CalendarView page (initial page of Booking tool)
2. The Experimenter selects a specific datetime on the CalendarView and defines the

desirable time interval for booking resources (timeslot selection)
3. CreateBooking page is loaded showing the available resources for the selected period (the

resource information is retrieved from the Master Data Repository indirectly via the
Testbed Directory Service API)

4. Experimenter selects UxV resources and submits the booking request (addBooking()
method is called on the Booking Service)

5. Allocate() is called to Aggregate Manager to ensure that reservation is also accepted by
SFA. If accepted then we proceed with the steps below otherwise the process is
terminated and appropriate feedback is returned to the experimenter

6. After performing the necessary authorization checks Booking Service performs its
internal actions and if successful, the booking request is persisted in the database with
status PENDING

7. Appropriate email notifications are sent to both the experimenter initiating the booking as
well as to the testbed operator responsible for approving it

8. Following the reception of booking notification an authorized Testbed Operator loads the
ApproveBooking page showing all pending booking requests

9. The Testbed Operator calls Booking Service approveBooking() method which after
checking for the proper authorization performs all the internal logic required for
confirming the experimenter’s request

10. If no conflict or any other problem occurs, the booking request is CONFIRMED
11. Following the confirmation a BookingStatusMsg is sent to the Message Bus informing

any interesting consumer component, that the booking request has changed status
12. Both Experimenter and Testbed Operator are informed by appropriate email notifications

 D4.8 - Design and Specification of RAWFIE Components (c)

112

Figure 51: Sequence Diagram for “Booking Testbed Resources” process

 D4.8 - Design and Specification of RAWFIE Components (c)

113

5.3 System Monitoring
No updates (refer to D4.5 for details).

5.4 Experiment Execution and Monitoring
The sequence diagram in Figure 52 shows a sample scenario where the Experimenter opens a
running experiment, gives directions, observes the results and visualises the scenario. Such
scenarios could be “environmental monitoring of water canals”, “border surveillance or
perimeter protection of large areas” and many others, as described in D3.1.

1. Prerequisites: the Experimenter is already logged in the system, an experiment is already
running and the Experimenter and has the right to observe the experiment

2. The Experimenter starts the Experiment Monitoring Tool in order to view the
experiments that (s)he booked and are available to her(him), then selects an already
running experiment from the list

3. The Experimenter opens the visualisation page
4. The Visualisation Engine gets the request from the Experimenter and retrieves the

available experiments for that user. The list of available experiments is presented. The
experimenter chooses the experiment and starts the visualisation

5. The Visualisation Engine gets the request for the chosen experiment and subscribes to the
topics that contain information about that experiment, the sensors and the UxVs that take
part in the experiment

6. When the UxV sends new information from its sensors – like movement, sensors’ data,
warnings, errors etc., then these messages are received by the Visualisation Engine
through the Message Bus

7. The Visualisation Engine updates and converts these messages to the proper format and
sends them to the Visualisation Tool, which presents them on the map and in the widgets

 D4.8 - Design and Specification of RAWFIE Components (c)

114

Figure 52: Sequence Diagram for “Experiment Execution and Monitoring” process

 D4.8 - Design and Specification of RAWFIE Components (c)

115

5.5 Experiment Measurements Recording
The sequence diagram in Figure 53 shows the Figure 53information flow with the components
involved in the resources (UxVs) control, and in sensors measurements acquisition and storing.
The following are the sequence of actions executed by the involved components:

1. The Experiment Controller, upon reception of the experiment’s instructions from the
Launching Service (not indicated in the picture), publishes the instructions on the
dedicated Message Bus topics. Examples of instructions for experiment execution
include, but are not limited to, the indication of a particular path for each given resource
(UxVs), and the sensors that need to be activated for the experiment

2. The instructions are then consumed, from the same Message Bus topics, by the Resource
Controller on the Testbed side

3. The Resource Controller will, in turn, publish the commands for the UxVs to the specific
Message Bus topics: first the sensors activation commands are published, which are in
turn consumed by the involved UxVs

4. Then the Resource Controller publishes “Next Position” commands for the UxVs, after
elaborating the instructions received from the Experiment Controller and the position
updates (feedback) published by the UxVs themselves, and always communicated
through the Message Bus. This is a continuous, closed loop process, so that the Resource
Controller may keep control of the UxVs movements (path, waypoints, and so on)

5. Together with the position updates, the UxVs also publishes all other expected sensors’
measurements

6. Sensors’ measurements are continuously consumed, besides the Resource Controller, by
the Measurements Backend Service component (Kafka HBase Connector), which is in
charge of ensuring the persistence of the same data within the selected HBase tables in
the NoSQL Measurements Repository

a. At runtime, other RAWFIE components (such as the Visualisation Engine in this
example) may directly access the Measurements Repository data.

 D4.8 - Design and Specification of RAWFIE Components (c)

116

Figure 53: Sequence Diagram for “Experiment Measurements Recording” process

 D4.8 - Design and Specification of RAWFIE Components (c)

117

5.6 Authoring and Launching of an Experiment
The sequence diagram in Figure 54 shows a sample flow for authoring and launching an
experiment. The adopted steps are as follows:

1. The Experiment gains access to the Authoring tool.	
2. The Experiment defines the experiment and gives commands to the tool.	
3. The Authoring tool performs a continuous validation process by communicating with the

Compiler and Validation Tool.	
4. The Compiler and Validation service communicates with the core validation service and

returns the results to the Authoring tool.	
5. The Authoring returns the retrieved messages to the Experimenter.	
6. The Experimenter, after the definition of the experiment, produces the required files to be

adopted by the remaining parts of the architecture.	
7. The Authoring tool invokes the Compiler and Validation Tool and, accordingly, the

required files are stored to the data repository.	
8. Finally, the Experimenter selects to launch an experiment by choosing its ID (for details

on the launching procedure please refer to sequence diagrams related to manual and/or
schedule launching in section 4.2.7).	

9. The Launching Service sends the required message to the Experiment Controller that
undertakes the responsibility to control the execution process of the experiment.	

10. The Experiment Controller sends the appropriate commands to the Resource Controller
and, accordingly, the commands are transferred, by applying the necessary modifications
to the UxV nodes. 	

11. A continuous communication between UxV nodes and Resource / Experiment Controller
is held until the end of the execution	

 D4.8 - Design and Specification of RAWFIE Components (c)

118

Figure 54: Sequence diagram for “Authoring and Launching of an Experiment”

 D4.8 - Design and Specification of RAWFIE Components (c)

119

5.7 Data Analysis
The sequence diagrams depicted in the following figures illustrate two distinct families of data
analysis tasks which are namely the data analysis tasks performed on data streams, the streaming
tasks, and the data analysis tasks performed on fixed non-time-dependent data structures, the
batch tasks. Those two types both involve the Data Analysis Engine, the Data Analysis Tool, the
Message Bus and the Analysis Result repository. Additionally, batch tasks are performed on data
coming from the Measurement Repository whereas streaming tasks are performed on real time
data coming directly from the Message Bus. In other words, the difference between the two types
relies on what kind of data the task is performed on, streams or batches. If they are not
interrupted, by the occurrence of an error or stopped manually by the user, streaming tasks run
indefinitely. Batch tasks however end when the data structure has been covered (the number of
time an algorithm pass through the fixed-size dataset is a user-defined parameter, generally
called epoch). The design of both types of tasks is done in a user-initialized Zeppelin notebook,
GUI accessible through the Rawfie Web Portal. The user can either create this notebook from the
Zeppelin GUI or use the Schema Registry GUI to preliminarily select the topic and fields present
in the Message Bus that the user wants to analyse. These GUIs are part of the Data Analysis
Tool. By selecting the desired topic and fields, the user is offered the possibility to create a
Zeppelin notebook, still from the Schema Registry GUI. Once selected, the user is re-directed to
a freshly-created notebook in the Zeppelin GUI, populated with the topic and fields the user just
selected in the previous GUI. Zeppelin is shipped with methods and functions that enable the
user to easily grab data from the Message Bus via a stream abstraction provided by the Data
Analysis Engine (Spark) it is built upon, and to easily pull batch data from the Measurement
Repository into a dataframe abstraction. The user can now either use the provided algorithms or
write his own to design the analysis task in the notebook. Finally, the user can, from within the
notebook and via a provided functionality, send the analytics results to a time series database
(whisper) with a dashboard for visualization purposes (streaming job) or to a classical database
(batch job).
The following sequence diagram corresponds to a use-case in which a user conducts a streaming
data analysis task:

1. The user defines a streaming data analysis task via the Zeppelin notebook GUI of the
Data Analysis Tool. One essential step of the design consist in specifying the data source.
The user can browse schemas via the Schema Registry GUI (as part of the Data Analysis
Tool), select the desired topic and the subsequent fields. Once the selection is done, the
user will be able to click on a notebook creation button, upon which the user will be
redirected to a newly created notebook, already populated with the selected elements. The
user can of course write and fill those fields directly in the notebook. As for the core of
the analytics, the user can either use the packaged functions, methods and algorithms
shipped with the component or design the task completely from scratch within the
notebook. The interactive notebook nature of the Zeppelin GUI makes such flexibility
with respect to the analytics design possible. Once the user is satisfied with the design of
the analytics task, he can run the associated blocks within the notebook to request the
execution of the streaming analytics task which submits it to the Data Analysis Engine.

2. The Data Analysis Tool relays the task instantiation order to the Data Analysis Engine
which initiates the task.

 D4.8 - Design and Specification of RAWFIE Components (c)

120

3. The Data Analysis Engine queries the Schema Registry for the user-specified information
and create a stream abstraction that is periodically updated with new entries from the
Message Bus.

4. The Data Analysis Engine performs the computations defined in the analytics task
sequentially on the most recently added data on the stream that is retrieved from the
Message Bus via the provided schema information (topic, fields to be analyzed). The
results are sequentially sent to the Analysis Results Repository as they are computed.

5. In the absence of computation error, the computation is interrupted if and only if the user
sends a kill signal from the Zeppelin notebook.

6. The results can be visualised through the Data Analysis Tool which integrates the
dashboard associated with the Analysis Results Repository. The user is able to visualise
the results on the dashboard at any time during the computation, the task does not need to
be over in order to see the results, which is crucial in streaming applications (otherwise
the task would have to be interrupted to see the results).

Figure 55: Sequence Diagram for the “Data Analysis in a streaming scenario” process

As mentioned in the first paragraph of this section, the second type of analysis that the user can
conduct, with respect to the type of data being analysed, are batch tasks. The following sequence
diagram corresponds to a use-case in which a user conducts a batch data analysis task:

1. The user defines a batch data analysis task via the Zeppelin notebook GUI of the Data
Analysis Tool. One essential step of the design consist in specifying the data source. The
user can browse schemas via the Schema Registry GUI (as part of the Data Analysis
Tool), select the desired topic and the subsequent fields. Once the selection is done, the
user will be able to click on a notebook creation button, upon which the user will be
redirected to a newly created notebook, already populated with the selected elements. The

 D4.8 - Design and Specification of RAWFIE Components (c)

121

user can of course write and fill those fields directly in the notebook. Within the
notebook, the user will be able to use the information (but not necessarily) to involve a
Hbase table (from the Measurement Repository) as the data structure to perform
computations on. As for the core of the analytics, the user can either use the packaged
functions, methods and algorithms shipped with the component or design the task
completely from scratch within the notebook. The interactive notebook nature of the
Zeppelin GUI makes such flexibility with respect to the analytics design possible. Once
the user is satisfied with the design of the analytics task, he can run the associated blocks
within the notebook to request the execution of the streaming analytics task which
submits it to the Data Analysis Engine.

2. The Data Analysis Tool relays the task instantiation order to the Data Analysis Engine
which initiates the task.

3. The Data Analysis Engine queries the Schema Registry for the user-specified information
and create a dataframe abstraction that contains all the entries present either in the
specified Hbase table or any other user-specified accessible database (Measurement
Repository).

4. The Data Analysis Engine performs the computations defined in the analytics task on the
data present in the dataframe structure.

5. In the absence of computation error, the computation is interrupted either if the task is
finished (it went over the dataframe a number of times equal to the optionally specified
number of epochs) or if the user sends a kill signal from the Zeppelin notebook. It is not
endless as a streaming task.

6. The results are finally stored once the analysis is complete in the Measurement
Repository.

Figure 56: Sequence Diagram for the “Data Analysis in a batch scenario” process

 D4.8 - Design and Specification of RAWFIE Components (c)

122

6 Security considerations
In this chapter considerations about possible security procedures to be applied in RAWFIE, are
described.

6.1 Network topology
In a rough overview of the RAWFIE network topology is given. The application server (with the
platform services and web applications), database servers and message bus brokers will run with
redundancies on several computers inside a computing centre. Testbed locations are connected to
the RAWFIE internal network via VPN. Router configurations / VPN settings define routing
restrictions (e.g. testbeds can only access the computers where the message bus broker runs).
Connections to the internet are restricted by a firewall that only allows HTTPS connections to
the proxy server but no other server in the RAWFIE internal network. The proxy server has
X.509 server certificates installed signed by a public CA. Therefore, clients/experimenters can
connect via a trusted HTTPS to the RAWFIE Web Portal. The proxy server forwards the HTTP
request to the internal application server where the web applications runs. This forwarding can
also include load balancing.

Firewall

Experimenter

Experimenter

Internet
HTTPS

Proxy	Server
HTTPS

Load	balancing

Application	Server
Database

Message	bus	broker

Testbed	A	controling
Message	bus	broker

Testbed	B	controlling
Message	bus	broker

	VPN	(over	internet)
Internal	Network

Routing	restrictions

Figure 57: Network topology

 D4.8 - Design and Specification of RAWFIE Components (c)

123

6.2 Internal communication, encryption and authentication
To ensure a robust communication with integrity, the system may rely on the X.509 public key
infrastructure with server and client certificates [8][9] via a SSL/TSL connection [10][11].
The RAWFIE internal communication is secured by server and client certificates. For this, an
internal RAWFIE Certificate Authority (CA) may be used: a root private key and certificate are
created and will be stored and managed at a secure place. Using the private key, the CA will sign
the client / server certificates for each RAWFIE component (for each RAWFIE component
separate private keys and certificates are created; the subject of the certificate is the component
name). The CA certificate will be installed in the “trust store” of each component. Only TSL
connection established using this certificates are trustworthy and are accepted by the
components. Additionally, components that are allowed to call a service can be whitelisted (or
have a special role in the User&Rights service) via the subject of the certificate. A simplified
scheme of the TSL connection establishing is depicted in Figure 58.

 D4.8 - Design and Specification of RAWFIE Components (c)

124

Client Server

TCP	connection	established

CLIENT	HELLO
(TLS	version,	session	ID,	supported	cipher	suites)

SERVER	HELLO
(TLS	version,	session	ID,	selected	cipher,

server	certificate,	client	certificate	request)
validated	sever	certificate	(is	the	certificate	itself	in	the
trust	store	or	signed	by	a	CA	in	the	trust	store?)

extract	public	key	from	server	certificate,	encrypt	"pre-master-key"	with	public	key

send	encrypt	"pre-master-key"	and	client	certificate		

validated	client	certificate	(is	the	certificate	itself	in	the
trust	store	or	signed	by	a	CA	in	the	trust	store?)

use	private	key	to	decrypt	"pre-master-key"

use	pre-masker-key	to	
compute	share	secret	key

use	pre-masker-key	to	
compute	shared	secret	key

CLIENT	FINISH

SERVER	FINISH

Encrypted	communication	using	the	shared	secret	key

TLS	
handshake

check	if	client	(certificate	subject)	is	in	the	white	list	

opt

client	whitelist	defined

opt

client	not	in	whitelist

close	connection

opt

server	certificate	not	trusted

close	connection

opt

client	certificate	not	trusted

close	connection

Figure 58: Simplified diagram for TLS handshake with server and client certificate

 D4.8 - Design and Specification of RAWFIE Components (c)

125

6.3 Message bus access
Access to the Message Bus may basically use the same concepts and techniques described before
for the internal communication between components in RAWFIE.
As far as security issues are concerned, Apache Kafka supports the following mechanisms:

1. Encryption of exchanged data via SSL / TLS
a. between clients (producers and consumers) and brokers (kafka servers)
b. between brokers (kafka servers of the same cluster)
c. between esternal tools and brokers (kafka servers)

2. Authentication of connections via SSL / TLS keys or using SASL (Simple
Authentication and Security Layer) + Kerberos (for users definition) and JAAS (Java
Autentication and Authorization Service)

a. clients (producers e consumers) authentication to the brokers (kafka servers)
b. authentication between brokers
c. authentication of external tools to Kafka servers
d. authentication of Kafka brokers to Zookeeper

3. Authorization mechanisms based on configurable ACLs (Access Control Lists)
a. e.g. to control which clients (producers and consumers) can write / read to / from

specific topics

Therefore, security of the exchanged data may be enabled through the creation of a TLS
certificate signed by a Certificate Authority (CA), a public / private key pair for the
authentication, and a proper configuration of the Apache Kafka brokers.
Authorization may be controlled on the other hand, through the configuration on each broker of
specific ACL rules. Apache Kafka implements its own “Authorizer” module, which stores ACL
rules for access and authorization control on specific resources. With a proper configuration of
the Kafka Authorizer, it is therefore possible to allow / deny specific operations, from a specific
host / client, on specific resources. This way, it will be possible to allow a specific client / host,
to read and / or write (operations) from / to a topic (ACL resource).

7 Summary and Outlook
The final design and specification of RAWFIE components presented in this document provides
instruction and guidelines for the physical deployment of the RAWFIE platform from a physical
standpoint. It also provides instructions on how the several software components are deployed
within different servers, together with the base technologies (Java, Tomcat, etc.) used for the
software execution environments, in the final version of the prototype (Section 4).
The mapping of the requirements identified in D3.3, with the needed software components
functionalities, was the starting point to provide a detailed design of all software components and
their interfaces from a development and operational perspective (Section 4).
This detailed design will be adopted for the 3rd implementation cycle, whereas the information
flows for some of the most relevant use cases highlighted in Section 5, will be the basis for
verification and validation tests on components functionalities and interfaces.

 D4.8 - Design and Specification of RAWFIE Components (c)

126

Small modifications to some aspects of the architecture and components’ design during the
project’s timeline are still possible. These may be mainly related to changes in some of the
technological choices, like e.g. the specific billing solution for the accounting service.

 D4.8 - Design and Specification of RAWFIE Components (c)

127

8 References
 https://forgerock.org/opendj/
 http://www.icinga.org/
 http://www.jnrpe.it/
 http://www.nagios.org/
 http://www.xwiki.org/xwiki/bin/view/Main/WebHome
 http://mathias-kettner.com/checkmk_livestatus.html
 http://killbill.io/
 Internet Engineering Task Force, Network Working Group. RFC 5280 - Internet X.509

Public Key Infrastructure Certificate and Certificate Revocation List (CRL). Online:
https://tools.ietf.org/html/rfc5280

 ZYTRAX. Survival guides - TLS/SSL and SSL (X.509) Certificates. Online:
http://www.zytrax.com/tech/survival/ssl.html

 Internet Engineering Task Force, Network Working Group. RFC 5246 - The Transport
Layer Security (TLS) Protocol Version 1.2. Online: https://tools.ietf.org/html/rfc5246

 Tim Polk, Kerry McKay, Santosh Chokhani, (April 2014). Guidelines for the
Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations.
National Institute of Standards and Technology. Online:
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf

 Willner, A., Papagianni, C. A., Giatili, M., Grosso, P., Morsey, M., Al-Hazmi, Y., & Baldin, I.
(2015). The Open-Multinet Upper Ontology Towards the Semantic-based Management of
Federated Infrastructures. EAI Endorsed Trans. Scalable Information Systems, 2(7), e2

 L. Peterson, S. R. Ricci, A. Falk and J. Chase. Slice-based Federation architecture.
Version 2.0 July 2010. URL: http://groups.geni.net/geni/raw-
attachment/wiki/SliceFedArch/SFA2.0.pdf

 http://groups.geni.net/geni/wiki/GAPI_AM_API_V3
 http://docs.datamountaineer.com/en/latest/kcql.html

9 Annex

9.1 Detailed description of the API provided by RAWFIE components

9.1.1 Testbed Directory Service

Table 5: REST methods description for the Testbed Directory Service

Resource Path /request/getAllTestbeds
Verb GET
Consumes None
Input example None
Path parameter None
Query parameters None
Produces application/json
Response String with a JSON array representation of Testbeds information

String with an error message in case of problems

 D4.8 - Design and Specification of RAWFIE Components (c)

128

Resource Path /request/getAllResources
Verb GET
Consumes None
Input example None
Path parameter None
Query parameters None
Produces application/json
Response String with a JSON array representation of Resources information

String with an error message in case of problems

Resource Path /request/testbed/identifier/{id}
Verb GET
Consumes None
Input example None
Path parameter Testbed {id}
Query parameters None
Produces application/json
Response String with a JSON representation of the Testbed information

String with an error message in case of problems

Resource Path /request/testbed/name/{name}
Verb GET
Consumes None
Input example None
Path parameter Testbed {name}
Query parameters None
Produces application/json
Response String with a JSON representation of the Testbed information

String with an error message in case of problems

Resource Path /request/testbeds/uav
Verb GET
Consumes None
Input example None
Path parameter None
Query parameters None
Produces application/json
Response String with a JSON array representation of Testbeds information

String with an error message in case of problems

Resource Path /request/testbeds/ugv
Verb GET
Consumes None

 D4.8 - Design and Specification of RAWFIE Components (c)

129

Input example None
Path parameter None
Query parameters None
Produces application/json
Response String with a JSON array representation of Testbeds information

String with an error message in case of problems

Resource Path /request/testbeds/usv
Verb GET
Consumes None
Input example None
Path parameter None
Query parameters None
Produces application/json
Response String with a JSON array representation of Testbeds information

String with an error message in case of problems

Resource Path /request/testbeds/auv
Verb GET
Consumes None
Input example None
Path parameter None
Query parameters None
Produces application/json
Response String with a JSON array representation of Testbeds information

String with an error message in case of problems

Resource Path /request/testbeds?health=Val1&testbedstatusmessage=Val2
Verb GET
Consumes None
Input example None
Path parameter None
Query parameters health & testbedstatusmessage values
Produces application/json
Response String with a JSON array representation of Testbeds information

String with an error message in case of problems

Resource Path /request/resource/identifier/{id}
Verb GET
Consumes None
Input example None
Path parameter Resource {id}
Query parameters None
Produces application/json

 D4.8 - Design and Specification of RAWFIE Components (c)

130

Response String with a JSON representation of the Resource information
String with an error message in case of problems

Resource Path /request/resource/name/{name}
Verb GET
Consumes None
Input example None
Path parameter Resource {name}
Query parameters None
Produces application/json
Response String with a JSON representation of the Resource information

String with an error message in case of problems

Resource Path /request/resources/testbedid/{id}
Verb GET
Consumes None
Input example None
Path parameter Testbed {id}
Query parameters None
Produces application/json
Response String with a JSON array representation of Resources information

String with an error message in case of problems

Resource Path /request/resources?resource_status=Val1&

resource_status_message=Val2
&resource_type=Val3&health=Val4

Verb GET
Consumes None
Input example None
Path parameter None
Query parameters resource_status & resource_status_message & resource_type & health

values
Produces application/json
Response String with a JSON array representation of Resources information

String with an error message in case of problems

Resource Path /request/createTestbed
Verb POST
Consumes application/json
Input example {

 "testbedId": "IES7",
 "name": "CATANIA",
 "description": "IES internal env CT",
 "uavSupport": true,
 "ugvSupport": false,

 D4.8 - Design and Specification of RAWFIE Components (c)

131

 "usvSupport": false,
 "auvSupport": false,
 "location": {
 "x": 37.508940,
 "y": 15.079919,
 "type": "point"
 },
 "healthStatusLut": {
 "healthStatusId": 2
 },
 "testbedstatusmessage": "UNKNOWN",
 "simulated": true,
 "indoor": true
}

Path parameter None
Query parameters None
Produces None
Response Exception message in case of problems

Resource Path /request/editTestbed
Verb PUT
Consumes application/json
Input example {

 "testbedId": "IES_1",
 "name": "CATANIA-1",
 "description": "IES internal env CT g7",
 "uavSupport": true,
 "ugvSupport": false,
 "usvSupport": false,
 "auvSupport": false,
 "location": {
 "x": 37.50894,
 "y": 15.079919,
 "type": "point"
 },
 "healthStatusLut": {
 "healthStatusId": 2
 },
 "testbedstatusmessage": "UNKNOWN",
 "simulated": true,
 "indoor": true
}

Path parameter None
Query parameters None
Produces application/json
Response Exception message in case of problems

 D4.8 - Design and Specification of RAWFIE Components (c)

132

Resource Path /request/createResource
Verb POST
Consumes application/json
Input example {

"resourceName": "Raspberry_IES_2",
"resourceTypeLut": {
 "resourceTypeId": 2
 },
"partition": 5,
 "connection": {
 "connectionId": "MST_wifi"
 },
 "testbed": {
 "testbedId": "IES_1"
 },
 "epsgCode": {
 "srid": 4326
 }
}

Path parameter None
Query parameters None
Produces None
Response Exception message in case of problems

Resource Path /request/editResource
Verb PUT
Consumes application/json
Input example {

"resourceId": 92,
"resourceName": "Raspberry_IES_3",
"resourceTypeLut": {
 "resourceTypeId": 2
 },
"partition": 4,
 "connection": {
 "connectionId": "ROBOTNIK_wifi"
 },
 "testbed": {
 "testbedId": "IES_1"
 },
 "epsgCode": {
 "srid": 4326
 }
}

Path parameter None

 D4.8 - Design and Specification of RAWFIE Components (c)

133

Query parameters None
Produces None
Response Exception message in case of problems

Resource Path /request/deleteTestbed
Verb DELETE
Consumes application/json
Input example {

 "testbedId" : "IES_1"
}

Path parameter None
Query parameters None
Produces None
Response Exception message in case of problems

Resource Path /request/deleteResource
Verb DELETE
Consumes application/json
Input example {

 "resourceId" : "92"
}

Path parameter None
Query parameters None
Produces None
Response Exception message in case of problems

Resource Path /request/deleteTestbedParameters/{id}
Verb DELETE
Consumes None
Input example None
Path parameter Testbed {id}
Query parameters None
Produces None
Response Exception message in case of problems

Resource Path /request/deleteResourceParameters/{id}
Verb DELETE
Consumes None
Input example None
Path parameter Resource {id}
Query parameters None
Produces None

 D4.8 - Design and Specification of RAWFIE Components (c)

134

Response Exception message in case of problems

9.1.2 System Monitoring Service
AVRO protocol definition:
{
 "protocol" : "SystemMonitoringServiceProtocol",
 "namespace" : "eu.rawfie.systemmonitoring.service.types",
 "types" : [{
 "type" : "record",
 "name" : "ComponentServiceHealth",
 "fields" : [{
 "name" : "componentId",
 "type" : "string"
 }, {
 "name" : "serviceName",
 "type" : "string"
 }, {
 "name" : "healthInformation",
 "type" : {
 "type" : "record",
 "name" : "HealthInformation",
 "fields" : [{
 "name" : "message",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "status",
 "type" : {
 "type" : "enum",
 "name" : "HealthStatus",
 "symbols" : ["OK", "WARNING", "CRITICAL", "UNKNOWN"]
 }
 }, {
 "name" : "updated",
 "type" : {
 "type" : "long",
 "CustomEncoding" : "DateAsLongEncoding"
 }
 }]
 }
 }]
 }, {
 "type" : "record",
 "name" : "ComponentServiceHealthRequest",
 "fields" : [{
 "name" : "componentId",
 "type" : "string"
 }, {
 "name" : "serviceName",
 "type" : "string"
 }]
 }],
 "messages" : {
 "getComponentServiceHealth" : {
 "request" : [{
 "name" : "ComponentServiceHealthRequest0",
 "type" : "ComponentServiceHealthRequest"
 }],
 "response" : ["null", "HealthInformation"]
 },
 "receiveHealtStatusUpdate" : {

 D4.8 - Design and Specification of RAWFIE Components (c)

135

 "request" : [{
 "name" : "ComponentServiceHealth0",
 "type" : "ComponentServiceHealth"
 }],
 "response" : "null"
 },
 "getComponentServiceHealth_internal" : {
 "request" : [{
 "name" : "ComponentServiceHealthRequest0",
 "type" : "ComponentServiceHealthRequest"
 }],
 "response" : ["null", "HealthInformation"]
 },
 "getComponentServiceHealths" : {
 "request" : [],
 "response" : {
 "type" : "array",
 "items" : "ComponentServiceHealth",
 "java-class" : "java.util.List"
 }
 }
 }
}

9.1.3 User & Rights Service
AVRO protocol definition
{
 "protocol": "UserAndRightsServiceProtocol",
 "namespace": "eu.rawfie.users.service.types",
 "types": [
 {
 "type": "record",
 "name": "CheckTestbedRolesRequest",
 "fields": [
 {
 "name": "userId",
 "type": "string"
 },
 {
 "name": "testbedId",
 "type": "string"
 },
 {
 "name": "requieredTestbedRoles",
 "type": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 }
 }
]
 },
 {
 "type": "record",
 "name": "Point",
 "namespace": "eu.rawfie.general.service.types",
 "fields": [
 {
 "name": "latitude",
 "type": "double"
 },
 {

 D4.8 - Design and Specification of RAWFIE Components (c)

136

 "name": "longitude",
 "type": "double"
 },
 {
 "name": "altitude",
 "type": [
 "null",
 "double"
],
 "default": null
 }
]
 },
 {
 "type": "record",
 "name": "TestbedData",
 "namespace": "eu.rawfie.general.service.types",
 "fields": [
 {
 "name": "testbedId",
 "type": "string"
 },
 {
 "name": "name",
 "type": "string"
 },
 {
 "name": "description",
 "type": "string"
 },
 {
 "name": "location",
 "type": "Point"
 },
 {
 "name": "area",
 "type": {
 "type": "array",
 "items": "Point",
 "java-class": "java.util.List"
 }
 },
 {
 "name": "resourceId",
 "type": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 }
 }
]
 },
 {
 "type": "record",
 "name": "LoginCredentials",
 "fields": [
 {
 "name": "name",
 "type": "string"
 },
 {
 "name": "password",
 "type": "string"
 }

 D4.8 - Design and Specification of RAWFIE Components (c)

137

]
 },
 {
 "type": "record",
 "name": "UserData",
 "fields": [
 {
 "name": "id",
 "type": [
 "null",
 "int"
],
 "default": null
 },
 {
 "name": "dn",
 "type": [
 "null",
 "string"
],
 "default": null
 },
 {
 "name": "uid",
 "type": [
 "null",
 "string"
],
 "default": null
 },
 {
 "name": "commonName",
 "type": [
 "null",
 "string"
],
 "default": null
 },
 {
 "name": "surname",
 "type": [
 "null",
 "string"
],
 "default": null
 },
 {
 "name": "forename",
 "type": [
 "null",
 "string"
],
 "default": null
 },
 {
 "name": "email",
 "type": [
 "null",
 "string"
],
 "default": null
 },
 {
 "name": "telephone",

 D4.8 - Design and Specification of RAWFIE Components (c)

138

 "type": [
 "null",
 "string"
],
 "default": null
 },
 {
 "name": "mobilePhone",
 "type": [
 "null",
 "string"
],
 "default": null
 }
]
 },
 {
 "type": "enum",
 "name": "UserAndRightsServiceErrorType",
 "symbols": [
 "NOT_ALLOWED",
 "ILLEGAL_ARGUMENT",
 "UNKNOWN"
]
 },
 {
 "type": "error",
 "name": "UserAndRightsServiceError",
 "fields": [
 {
 "name": "type",
 "type": "UserAndRightsServiceErrorType"
 },
 {
 "name": "detailMessage",
 "type": [
 "null",
 "string"
]
 }
]
 }
],
 "messages": {
 "getRoles": {
 "request": [],
 "response": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 },
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "getGroups": {
 "request": [],
 "response": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 },
 "errors": [
 "UserAndRightsServiceError"

 D4.8 - Design and Specification of RAWFIE Components (c)

139

]
 },
 "getUsers": {
 "request": [],
 "response": {
 "type": "array",
 "items": "UserData",
 "java-class": "java.util.List"
 },
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "setPassword": {
 "request": [
 {
 "name": "LoginCredentials0",
 "type": "LoginCredentials"
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "addGroup": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "login": {
 "request": [
 {
 "name": "LoginCredentials0",
 "type": "LoginCredentials"
 }
],
 "response": [
 "null",
 "UserData"
],
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "checkLogin": {
 "request": [
 {
 "name": "LoginCredentials0",
 "type": "LoginCredentials"
 }
],
 "response": "boolean",
 "errors": [
 "UserAndRightsServiceError"
]
 },

 D4.8 - Design and Specification of RAWFIE Components (c)

140

 "getUser": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 }
],
 "response": [
 "null",
 "UserData"
],
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "checkRoles": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 },
 {
 "name": "array1",
 "type": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 }
 }
],
 "response": "boolean",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "addUser": {
 "request": [
 {
 "name": "UserData0",
 "type": "UserData"
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "editUser": {
 "request": [
 {
 "name": "UserData0",
 "type": "UserData"
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "setRolesOfUser": {
 "request": [
 {
 "name": "string0",
 "type": "string"

 D4.8 - Design and Specification of RAWFIE Components (c)

141

 },
 {
 "name": "array1",
 "type": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 }
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "deleteUser": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "renameGroup": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 },
 {
 "name": "string1",
 "type": "string"
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "addUserToGroup": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 },
 {
 "name": "string1",
 "type": "string"
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "getUsersOfGroup": {
 "request": [
 {
 "name": "string0",
 "type": "string"

 D4.8 - Design and Specification of RAWFIE Components (c)

142

 }
],
 "response": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 },
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "getGroupsOfUser": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 }
],
 "response": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 },
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "setRolesOfGroup": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 },
 {
 "name": "array1",
 "type": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 }
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "getRolesOfGroup": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 }
],
 "response": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 },
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "lockUser": {

 D4.8 - Design and Specification of RAWFIE Components (c)

143

 "request": [
 {
 "name": "string0",
 "type": "string"
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "unloockUser": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "validateUserData": {
 "request": [
 {
 "name": "UserData0",
 "type": "UserData"
 }
],
 "response": "boolean",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "getTestbedRoles": {
 "request": [],
 "response": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 },
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "getTestbeds": {
 "request": [],
 "response": {
 "type": "array",
 "items": "eu.rawfie.general.service.types.TestbedData",
 "java-class": "java.util.List"
 },
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "getTestbedIds": {
 "request": [],
 "response": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 },

 D4.8 - Design and Specification of RAWFIE Components (c)

144

 "errors": [
 "UserAndRightsServiceError"
]
 },
 "ping": {
 "request": [],
 "response": "string"
 },
 "getDirectRolesOfUser": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 }
],
 "response": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 },
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "getGroupRolesOfUser": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 }
],
 "response": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 },
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "removeUserFromGroup": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 },
 {
 "name": "string1",
 "type": "string"
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "removeGroupFromRoles": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 },
 {
 "name": "array1",

 D4.8 - Design and Specification of RAWFIE Components (c)

145

 "type": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.List"
 }
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "getUserTestbedRoles": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 }
],
 "response": {
 "type": "map",
 "values": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.Collection"
 }
 },
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "setUserTestbedRoles": {
 "request": [
 {
 "name": "string0",
 "type": "string"
 },
 {
 "name": "map1",
 "type": {
 "type": "map",
 "values": {
 "type": "array",
 "items": "string",
 "java-class": "java.util.Collection"
 }
 }
 }
],
 "response": "null",
 "errors": [
 "UserAndRightsServiceError"
]
 },
 "checkTestbedRoles": {
 "request": [
 {
 "name": "CheckTestbedRolesRequest0",
 "type": "CheckTestbedRolesRequest"
 }
],
 "response": "boolean",
 "errors": [
 "UserAndRightsServiceError"

 D4.8 - Design and Specification of RAWFIE Components (c)

146

]
 }
 }
}

9.1.4 Booking (Reservation) Service
AVRO protocol definition:
{
 "protocol" : "ReservationServiceProtocol",
 "namespace" : "eu.rawfie.reservation.service.types",
 "types" : [{
 "type" : "record",
 "name" : "ReservationQuery",
 "fields" : [{
 "name" : "from",
 "type" : {
 "type" : "long",
 "CustomEncoding" : "DateAsLongEncoding"
 }
 }, {
 "name" : "to",
 "type" : {
 "type" : "long",
 "CustomEncoding" : "DateAsLongEncoding"
 }
 }, {
 "name" : "userId",
 "type" : ["null", {
 "type" : "string",
 "avro.java.string" : "String"
 }],
 "default" : null
 }]
 }, {
 "type" : "record",
 "name" : "ReservationStatusMsg",
 "fields" : [{
 "name" : "reservationId",
 "type" : {
 "type" : "string",
 "avro.java.string" : "String"
 }
 }, {
 "name" : "status",
 "type" : {
 "type" : "enum",
 "name" : "ReservationStatus",
 "symbols" : ["OK", "PENDING", "REJECTED", "CONFLICT", "DELETED"]
 }
 }, {
 "name" : "msg",
 "type" : ["null", {
 "type" : "string",

 D4.8 - Design and Specification of RAWFIE Components (c)

147

 "avro.java.string" : "String"
 }],
 "default" : null
 }]
 }, {
 "type" : "record",
 "name" : "ReservationData",
 "fields" : [{
 "name" : "reservationId",
 "type" : {
 "type" : "string",
 "avro.java.string" : "String"
 }
 }, {
 "name" : "start",
 "type" : {
 "type" : "long",
 "CustomEncoding" : "DateAsLongEncoding"
 }
 }, {
 "name" : "end",
 "type" : {
 "type" : "long",
 "CustomEncoding" : "DateAsLongEncoding"
 }
 }, {
 "name" : "experimentRefId",
 "type" : ["null", {
 "type" : "string",
 "avro.java.string" : "String"
 }],
 "default" : null
 }, {
 "name" : "userRefId",
 "type" : {
 "type" : "string",
 "avro.java.string" : "String"
 }
 }, {
 "name" : "reservationItems",
 "type" : {
 "type" : "array",
 "items" : {
 "type" : "record",
 "name" : "ReservationItem",
 "fields" : [{
 "name" : "reservationDataRefId",
 "type" : {
 "type" : "string",
 "avro.java.string" : "String"
 }
 }, {
 "name" : "experimentRefId",
 "type" : ["null", {
 "type" : "string",

 D4.8 - Design and Specification of RAWFIE Components (c)

148

 "avro.java.string" : "String"
 }],
 "default" : null
 }, {
 "name" : "lauchConfigRefId",
 "type" : ["null", {
 "type" : "string",
 "avro.java.string" : "String"
 }],
 "default" : null
 }, {
 "name" : "unqResourceId",
 "type" : {
 "type" : "string",
 "avro.java.string" : "String"
 }
 }, {
 "name" : "experimentStart",
 "type" : {
 "type" : "long",
 "CustomEncoding" : "DateAsLongEncoding"
 }
 }, {
 "name" : "experimentEnd",
 "type" : {
 "type" : "long",
 "CustomEncoding" : "DateAsLongEncoding"
 }
 }]
 },
 "java-class" : "java.util.List"
 }
 }]
 }],
 "messages" : {
 "addReservation" : {
 "request" : [{
 "name" : "ReservationData0",
 "type" : "ReservationData"
 }],
 "response" : "ReservationStatusMsg"
 },
 "editReservation" : {
 "request" : [{
 "name" : "ReservationData0",
 "type" : "ReservationData"
 }],
 "response" : "ReservationStatusMsg"
 },
 "getReservations" : {
 "request" : [{
 "name" : "ReservationQuery0",
 "type" : "ReservationQuery"
 }],
 "response" : {

 D4.8 - Design and Specification of RAWFIE Components (c)

149

 "type" : "array",
 "items" : "ReservationData",
 "java-class" : "java.util.List"
 }
 },
 "getReservation" : {
 "request" : [{
 "name" : "string0",
 "type" : "string"
 }],
 "response" : "ReservationData"
 },
 "approveBooking" : {
 "request" : [{
 "name" : "string0",
 "type" : "string"
 }],
 "response" : "ReservationStatusMsg"
 },
 "rejectBooking" : {
 "request" : [{
 "name" : "string0",
 "type" : "string"
 }, {
 "name" : "union1",
 "type" : ["null", "string"]
 }],
 "response" : "ReservationStatusMsg"
 },
 "deleteReservation" : {
 "request" : [{
 "name" : "string0",
 "type" : "string"
 }],
 "response" : "ReservationStatusMsg"
 },
 "checkForConflictingReservations" : {
 "request" : [{
 "name" : "ReservationData0",
 "type" : "ReservationData"
 }],
 "response" : "boolean"
 }
 }
}

9.1.5 Launching Service
AVRO protocol definition:
{
 "protocol" : "LaunchingServiceProtocol",
 "namespace" : "eu.rawfie.launching.service.types",
 "types" : [{
 "type" : "record",

 D4.8 - Design and Specification of RAWFIE Components (c)

150

 "name" : "ExperimentScheduleRequest",
 "namespace" : "eu.rawfie.general.service.types",
 "fields" : [{
 "name" : "experimentId",
 "type" : {
 "type" : "string",
 "avro.java.string" : "String"
 }
 }, {
 "name" : "experimentStart",
 "type" : {
 "type" : "long",
 "CustomEncoding" : "DateAsLongEncoding"
 }
 }, {
 "name" : "experimentEnd",
 "type" : {
 "type" : "long",
 "CustomEncoding" : "DateAsLongEncoding"
 }
 }]
 }, {
 "type" : "record",
 "name" : "LaunchingServiceActionResp",
 "fields" : [{
 "name" : "executionId",
 "type" : "string"
 }, {
 "name" : "experimentId",
 "type" : "string"
 }, {
 "name" : "status",
 "type" : "boolean"
 }, {
 "name" : "msg",
 "type" : "string"
 }]
 }],
 "messages" : {
 "manualStart" : {
 "request" : [{
 "name" : "string0",
 "type" : "string"
 }],
 "response" : ["null", "LaunchingServiceActionResp"]
 },
 "schedule" : {
 "request" : [{
 "name" : "ExperimentScheduleRequest0",
 "type" : "eu.rawfie.general.service.types.ExperimentScheduleRequest"
 }],
 "response" : "LaunchingServiceActionResp"
 },
 "cancel" : {
 "request" : [{

 D4.8 - Design and Specification of RAWFIE Components (c)

151

 "name" : "string0",
 "type" : "string"
 }, {
 "name" : "string1",
 "type" : "string"
 }],
 "response" : "LaunchingServiceActionResp"
 }
 }
}

9.2 Abbreviations
Abbreviation Meaning
3D three-dimensional space
ACL Access Control List
AGL Above Ground Level
AHRS Attitude and Heading Reference System
AJAX Asynchronous JavaScript and XML
AM Aggregate Manager (of SFA)
AP Access Point
API Application Programming Interface
API Application programming interface
AT Aerial Testbed
AUV Autonomous underwater vehicle
B-VLOS Beyond Visual Line Of Sight
CA Certification Authority
CAA Civil Aviation Authority
CAO Cognitive Adaptive Optimization
CBNR Chemical Biological Nuclear Radiological
CEP Circular Error Probability
CPU Central Processing Unit
CSR Certificate Signing Request
DETEC Department of the Environment, Transport, Energy and Communication
DGCA Directorate General of Civil Aviation
DoA Description of Actions
EASA European Aviation Safety Agency
EC Experiment Controller
ECC Error Correction Code
ECV EDL Compiler & Validator
EDL Experiment Description Language
EDL Experiment Description Language
EER Experiment and EDL Repository
EU European Union
E-VLOS Extended Visual Line Of Sight
EVS Experiment Validation Service
FIRE Future Internet Research & Experimentation
FOCA Federal Office of Civil Aviation
FPS Frames Per Second

 D4.8 - Design and Specification of RAWFIE Components (c)

152

FPV First Person View
GAA German Aviation Act
GIS Geographic Information System
GNSS Global Navigation Satellite System
GPIO General Purpose Input/Output
GPS Global Positioning System
GUI Graphical user interface
HD High Definition
HTTP Hypertext Transfer Protocol
HW Hardware
IAA Irish Aviation Authority
IaaS Infrastructure as a Service
IDE Integrated Development Environment
IDE integrated development environment
IFR Instrument Flight Rules
IP Internet Protocol
ISO International Standards Organization
JDBC Java Database Connectivity
JSON JavaScript Object Notation
KPI Key Performance Indicator
KPI Key Performance Indicator
LBL Long Baseline
LDAP Lightweight Directory Access Protocol
LS Launching Service
MEMS MicroElectroMechanical System
MM Monitoring Manager
MSO Multi Swarm Optimization
MT Maritime Testbed
MOM Message Oriented Middleware
MVC Model View Controller
NAT Network Address Translation
NC Network Controller
NF Non Functional
ODBC Open Database Connectivity
OEDL OMF EDL
OMF cOntrol and Management Framework
OMF Orbit Management Framework
OML ORBIT Measurement Library
OS Operating System
OTA Over The Air
P2P Point to Point
PSO Particle Swarm Optimization
PTZ Pan Tilt Zoom
RC Resource Controller
RC Resource Controller
RE Requirement Engineering
REST Representational state transfer
RIA Research and Innovation Action
ROS Robot Operating System

 D4.8 - Design and Specification of RAWFIE Components (c)

153

ROV Remotely Operated Vehicle
RPA Remotely Piloted Aircraft
RPAS Remotely Piloted Aircraft System
RPS Remotely Piloted Station
RSpec SFA Resource Specification
SaaS Software as a Service
SAML Security Assertion Markup Language
SFA Slice-based Federation Architecture
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Simple Query Language
SSO Single-Sign-On
SVN Apache Subversion
TM Testbed Manager
TMS Testbed Manager Suite
TP Testbed Proxy
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
UI User Interface
UML Unified Modelling Language
USV Unmanned Surface Vehicle
UUV Unmanned Underwater Vehicle
UxV Unmanned aerial/ground/surface/underwater Vehicle
VE Visualization Engine
VPN Virtual Private Network
VT Vehicular Testbed
VT Visualization Tool
WCS Web Coverage Service
WFS Web Feature Service
WMS Web Map Service
WPS Web Processing Service
WSDL Web Services Description Language
XMPP Extensible Messaging and Presence Protocol

9.3 Glossary

A
Accounting Service

RAWFIE component. Component that keeps track of resources usage by individual users.

Aggregate Manager
Slice Federation Architecture (SFA) term. The Aggregate Manager API is the interface by
which experimenters discover, reserve and control resources at resource providers.

 D4.8 - Design and Specification of RAWFIE Components (c)

154

Avro
Apache Avro: a remote procedure call and data serialization framework

B
Booking Service

RAWFIE component. The Booking Service manages bookings of resources by registering
data to appropriate database tables.

Booking Tool
RAWFIE component. The Booking tool will provide the appropriate Web UI interface for the
experimenter to discover available resources and reserve them for a specified period.

C
Common Testbed Interface

RAWFIE component. The set of software and hardware functionalities each Testbed provider
should ensure, for the communication with Middle Tier software components of RAWFIE,
therefore for the integration with the RAWFIE platform

Component

A reusable entity that provides a set of functionalities (or data) semantically related. A
component may encapsulate one or more modules (see definition) and should provide a well
defined API for interaction

D
Data Analysis Engine

RAWFIE component. The Data Analysis Engine enables the execution of data processing
jobs by sending requests to a processing engine which will perform the computations
specified when the analytical task was defined through the Data Analysis Tool to be
transmitted to the processing engine for execution.

Data Analysis Tool

RAWFIE component. The Data Analysis Tool enables the user to browse available data
sources for subject to analytical treatment as well as previous analysis tasks' outcomes.

E

 D4.8 - Design and Specification of RAWFIE Components (c)

155

EDL Compiler & Validator
RAWFIE component. The EDL validator will be responsible for performing syntactic and
semantic analysis on the provided EDL scripts.

Experiment Authoring Tool

RAWFIE component. This component is actually a collection of tools for defining
experiments and authoring EDL scripts through RAWFIE web portal. It will provide features
to handle resource requirements/configuration, location/topology information, task description
etc.

Experiment Controller
RAWFIE component. The Experiment Controller is a service placed in the Middle tier and is
responsible to monitor the smooth execution of each experiment. The main task of the
experiment controller is the monitoring of the experiment execution while acting as ‘broker’
between the experimenter and the resources.

Experiment Monitoring Tool

RAWFIE component. Shows the status of experiments and of the resources used by
experiments.

Experiment Validation Service
RAWFIE component. The Experiment Validation Service will be responsible to validate
every experiment as far as execution issues concern.

M
Master Data Repository

RAWFIE component. Repository that stores all main entities that are needed in the RAWFIE
platforms. Is an SQL-database

Measurements Repository

RAWFIE component. Stores the raw measurements from the experiments

Message Bus

Also known as Message Oriented Middleware. A message bus is supports sending and
receiving messages between distributed systems. It is used in RAWFIE across all tiers to
enable asynchronous, event-based messaging between heterogeneous components.
Implements the Publish/Subscribe paradigm.

Module
A set of code packages within one software product that provides a special functionality

 D4.8 - Design and Specification of RAWFIE Components (c)

156

Monitoring Manager
RAWFIE component. Monitors the status of the testbed and the UxVs belonging to it, at
functional level, e.g. the ‘health of the devices’ and current activity.

N
Network Controller

Manages the network connections and the switching between different technologies in the
testbed in order to offer seamless connectivity in the operations of the system.

L
Launching Service

RAWFIE component. The Launching Service is responsible for handling requests for starting
or cancellation of experiments.

R
Resource Controller

RAWFIE component. The Resource Controller can be considered as a cloud robot and
automation system and ensures the safe and accurate guidance of the UxVs.

Resource Explorer Tool
RAWFIE component. The experimenter can discover and select available testbeds as well as
resources/UxVs inside a testbed with this tool. Administrators can manage the data.

Results Repository

RAWFIE component. Stores the results of data analyses.

Resource Specification (RSpec)

SFA term. This is the means that the SFA uses for describing resources, resource requests,
and reservations (declaring which resources a user wants on each Aggregate).

S
Schema Registry

A schema registry is a central service where data schemas are uploaded to. As an added
benefit each schema has versions with it can convert allowable formats to other ones (e.g.:

 D4.8 - Design and Specification of RAWFIE Components (c)

157

float to double) It maintains schemas for the data transferred and keeps revisions to be able to
upgrade the definitions as with the simple field conversion. Used in RAWFIE for messages on
the message bus.

Service

A component that is running in the system, providing specific functionalities and accessible
via a well known interface.

Slice Federation Architecture (SFA)
SFA is the de facto standard for testbed federation and is a secure, distributed and scalable
narrow waist of functionality for federating heterogeneous testbeds.

Subsystem

A collection of components providing a subset of the system functionalities.

System

A collection of subsystems and/or individual components representing the provided software
solution as a whole.

System Monitoring Service
RAWFIE component. Checks readiness of main components and ensure that all critical
software modules will perform at optimum levels. Predefined notification are triggered
whenever the corresponding conditions are met, or whenever thresholds are reached

System Monitoring Tool
RAWFIE component. Shows the status and the readiness of the various RAWFIE services
and testbed

T
Testbed

A testbed is a platform for conducting rigorous, transparent, and replicable testing of scientific
theories, computational tools, and new technologies.
In the context of RAWFIE, a testbed or testbed facility is a physical building or area where
UxVs can move around to execute some experiments. In addition, the UxVs are stored in or
near the testbed.

Testbeds Directory Service
RAWFIE component. Represents a registry service of the middleware tier where all the
integrated testbeds and resources accessible from the federated facilities are listed, belonging
to the RAWFIE federation.

 D4.8 - Design and Specification of RAWFIE Components (c)

158

Testbed Manager
RAWFIE component. Contains accumulated information about the UxVs resources and the
experiments of each one of the federation testbeds.

Tool

A GUI implementation to do a special thing, e.g. the “Resource Explorer tool” to search for a
resource

U
Users & Rights Repository

RAWFIE component. Management of users and their roles. Is a directory services (LDAP).

Users & Rights Service

RAWFIE component. Manages all the users, roles and rights in the system.

UxV

The generic term for unmanned vehicle. In RAWFIE, it can be either:
USV - Unmanned Surface vehicle.

UAV - Unmanned Aerial vehicle.
UGV - Unmanned Ground vehicle.

UUV - Unmanned Underwater vehicle.

UxV Navigation Tool

RAWFIE component. This component will provide to the user the ability to (near) real-time
remotely navigate a squad of UxVs.

UxV node
RAWFIE component. A single UxV node. The UxV is a complete mobile system that
interacts with the other Testbed entities. It can be remotely controlled or able to act and move
autonomously.

V
Visualisation Engine

RAWFIE component. Used for providing the necessary information to the Visualisation tool,
to communicate with the other components, to handle geospatial data, to retrieve data for
experiments from the database, to load and store user settings and to forward them to the
visualisation tool.

 D4.8 - Design and Specification of RAWFIE Components (c)

159

Visualisation Tool
RAWFIE component. Visualisation of an ongoing experiment as well as visualisation of
experiments that are already finished

W
Web Portal

RAWFIE component. The central user interface that provides access to most of the RAWFIE
tools/services and available documentation.

Wiki Tool

RAWFIE component. Provides documentation and tutorials to the users of the platform.

