
 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

1

Road-, Air- and Water-based Future Internet

Experimentation

Project Acronym: RAWFIE

Contract Number:

645220

Starting date: Jan 1st 2015 Ending date: Dec 31st 2018

Deliverable Number
and Title

D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

Confidentiality PU Deliverable type
1
 R

Deliverable File D6.1 Date 31.05.2016

Approval Status
2
 WP Leader, 1

st
 Reviewer,

2
nd

 Reviewer
Version 1.0

Contact Person Philippe Dallemagne Organization CSEM

Phone E-Mail Philippe.Dallemagne@csem.ch

1
 Deliverable type: P(Prototype), R (Report), O (Other)

2
 Approval Status: WP leader, 1

st
 Reviewer, 2

nd
 Reviewer, Advisory Board

Ref. Ares(2016)2520191 - 31/05/2016

2

AUTHORS TABLE

Name Company E-Mail

Philippe Dallemagne CSEM Philippe.dallemagne@csem.ch

Nikolaos Pringouris HAI Priggouris.nikolaos@haicorp.com

Jason Ramapuram HES-SO Jason-emmanuel.ramapuram@hesge.ch

Marcel Heckel Fraunhofer marcel.heckel@ivi.fraunhofer.de

Giovanni Tusa IES g.tusa@iessolutions.eu

Kostas Kolomvatsos UoA kostasks@di.uoa.gr

Miltiadis Kyriakakos UoA miltos@di.uoa.gr

Kiriakos Georgouleas HAI Georgouleas.kiriakos@haicorp.com

Vasil Kumanov Epsilon Bulgaria Vasil.kumanov@epsilon-bulgaria.com

Kakia Panagidi UoA kakiap@di.uoa.gr

Ricardo Martins MST Rasm@oceanscan-mst.com

REVIEWERS TABLE

Name Company E-Mail

Marcel Heckel Fraunhofer

Giovanni Tusa IES g.tusa@iessolutions.eu

DISTRIBUTION

Name / Role Company Level of

confidentiality
3

Type of deliverable

Consortium PU R

3
 Deliverable Distribution: PU (Public, can be distributed to everyone), CO (Confidential, for use by consortium

members only), RE (Restricted, available to a group specified by the Project Advisory Board).

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

3

CHANGE HISTORY

Version Date Reason for Change Pages/Sections

Affected

0.1 01.03.2016 Template All

0.2 17.03.2016 TOC / Initial version All

0.3 21.04.2016 Revised ToC All

0.4 09.05.2016 Version for editing All

0.5 19.05.2016 Consolidated version All

0.6 26.05.2016 Version for internal review All

1.0 31.05.2016 Final version All

4

Abstract:

The objective of this deliverable is to report about the interface tests, the verification tests and to

present the integration results and all the technicalities required for the consolidation of the several

components (software and hardware) of the RAWFIE architecture in a unified platform.

Enhancements of the RAWFIE operational platform based on the outcomes of the testing procedures

are also listed in this deliverable. The document is released as a live document in three phases/cycles

according to the roadmap.

This deliverable is based on the results of the following tasks: T6.1 and T6.2 on the basis of the work

done in WP5, and on the verification tests planning presented in D4.3.

Keywords: Integration, interface tests, verification tests,

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

5

Part II: Table of Contents-

Part II: Table of Contents- ... 5

List of Figures .. 7

List of Tables .. 8

Part III: Executive Summary ... 14

Part IV: Main Section .. 15

1 Introduction .. 15

1.1 Scope of D6.1 .. 15

1.2 Definitions ... 15

1.3 Relation to other deliverables .. 16

2 Integration & Testing.. 16

2.1 Approach ... 16

2.2 Methodology ... 20

2.2.1 Test framework .. 22

2.3 Integration environment setup (UoA) ... 25

2.3.1 ICT infrastructure (UoA) ... 25

2.3.2 Data repositories .. 27

2.3.3 Message Bus data format ... 28

2.3.4 Testbeds and configurations .. 28

2.4 Integration Test Results ... 30

2.4.1 Front-end integration ... 32

2.4.2 Middle tier integration ... 36

2.4.3 Testbed integration... 40

2.4.4 Inter-tier integration ... 42

2.4.5 End-to End Integration ... 43

2.5 Verification scenarios results .. 45

2.5.1 Web Portal (Graphical User Interface) .. 45

2.5.2 Communication and storage components .. 63

2.5.3 Testbed control, monitoring and analysis components 70

2.5.4 Testbed resources ... 73

3 Roadmap ... 90

3.1 Deviations.. 90

3.2 Suggested modifications and improvements ... 91

6

3.2.1 Modifications and improvements to the RAWFIE system 91

4 Suggested Customizations .. 92

4.1 Component customizations ... 93

4.2 General Platform & testbed Customizations ... 93

4.3 UxVs Customizations .. 93

5 Conclusion .. 94

Part V: Annex .. 95

Annex B Requirements ... 101

References .. 103

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

7

List of Figures

Figure 1: RAWFIE architecture (first iteration) .. 18

Figure 2: Integration, tests and validation process... 20

Figure 3: 1
st
 RAWFIE environment integration .. 25

Figure 4: Architecture of the UUV+UGV setup .. 30

Figure 5: RAWFIE architecture (first version) and current integration coverage 32

8

List of Tables

Table 1: template for reporting interface test results ... 22

Table 2: template for reporting integration scenarios test results (example adapted from D4.3

test case) ... 24

Table 3: Usage status of Rawfie components .. 27

Table 4: interface interaction matrix .. 31

Table 5 - Interface types used in interface testing ... 32

Table 6: Test of the Web portal interfaces ... 33

Table 7: Test of the Resource explorer interfaces ... 34

Table 8: Test of the System Monitoring Tool interfaces ... 34

Table 9: Test of the Visualisation Tool interfaces ... 34

Table 10: Test of the Data Analysis Tool interfaces.. 35

Table 11: Test of the Experiment Authoring Tool interfaces .. 35

Table 12: Interface test of the Booking Tool ... 36

Table 13: Test of the Testbed Directory Service interfaces ... 38

Table 14: Test of the Visualisation Engine interfaces ... 39

Table 15: Test of the Data Analysis Engine interfaces .. 39

Table 16: Test of the Launching service interfaces ... 40

Table 17: Test of the Booking Service interfaces .. 40

Table 18: Test of the Tesbed Manager interfaces .. 41

Table 19: Test of the Resource Controller interfaces .. 41

Table 20: Test of the UxV Node interfaces ... 42

Table 21: Test of the EDL Compiler and Validator interfaces .. 43

Table 22: Test of the interfaces involved in end-to-end integration .. 44

Table 23: Verification test of the Web Portal - Login/ Logout .. 45

Table 24: Verification test of the Web Portal – Language selection 45

Table 25: Verification test of the Visualisation of system and UxV health status 46

Table 26: Verification test of the Browse testbeds and UxVs and start booking 46

Table 27: Verification test of the Visualisation of experiment status 47

Table 28: Verification test of the Visualisation of booking status... 47

Table 29: Verification test of the Booking on free date... 48

Table 30: Verification test of the Booking on reserved date ... 49

Table 31: Verification test of the ability of the Analysis Engine to query message bus streams

& schemas from the schema registry ... 50

Table 32: Verification test of the ability of the Analysis Engine to receive messages from the

Analysis Tool ... 50

Table 33: Verification test of the ability of the Analysis Engine to write data to the results

database .. 51

Table 34: Verification test of the provision of an interface to the Analysis Engine by the

Analysis Tool ... 51

Table 35: Verification test of the ability of the Analysis Tool to query available data schemas

.. 52

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

9

Table 36: Verification test of the ability of the Analysis Tool to read results from the results

database .. 52

Table 37: Verification test of the in-Textual Editor Experiments definition 53

Table 38: Verification test of the Textual Editor Experiments Update 54

Table 39: Verification test of the in-Visual Editor Experiments Define 55

Table 40: Verification test of the in-Visual Editor Experiments Update 56

Table 41: Verification test of the Editor switching .. 56

Table 42: Verification test of the experiment Launchings... 57

Table 43: Verification test of the Experiments compilation .. 58

Table 44: Verification test of the Experiments validation ... 58

Table 45: Verification test of the UxV navigation tool access and produced instructions

validation.. 59

Table 46: Verification test of the User request handling ... 59

Table 47: Verification test of the Geospatial data handling .. 60

Table 48: Verification test of the Geospatial data modification .. 60

Table 49: Verification test of the Experiment Controller communication 61

Table 50: Verification test of the Visualization Tool Interaction .. 61

Table 51: Verification test of the Camera interaction .. 62

Table 52: Verification test of the resource Retrieval from testbed facility 63

Table 53: Verification test of the Addition of a new testbed facility to the RAWFIE

federation ... 64

Table 54: Verification test of the Registration of a new UxV node into a testbed facility 65

Table 55: Verification test of the Retrieval of testbed information and belonging resources . 66

Table 56: Verification test of the Visualisation of experiment status 67

Table 57: Verification test of the user rights checks.. 67

Table 58: Verification test of the short term launching ... 68

Table 59: Verification test of long term launching .. 69

Table 60: Verification test of Experiment Controller connection ... 70

Table 61: Verification test of Experiment Controller workflow ... 71

Table 62: Verification test of Monitoring Activity .. 71

Table 63: Verification test of network interface switching due to connectivity problems 72

Table 64: Verification test of Connection and of Accuracy validation of the given Instructions

.. 73

Table 65: Verification test of Testbed health status... 74

Table 66: Verification test of status of the experiments .. 75

Table 67: Verification test of the Management of the experiments without middle-tier

connection .. 76

Table 68: Verification test of UxV Return to base .. 77

Table 69: Verification test of the ability of the UxV to follow a route 78

Table 70: Verification test of Acquire sensor samples .. 79

Table 71: Verification test of Fidelity to commands ... 80

Table 72: Verification test of Continuous communication .. 81

Table 73: Verification test of Secure communication ... 82

Table 74: Verification test of Real-time communication .. 83

10

Table 75: Verification test of Resume communication and data transfer 84

Table 76: Verification test of UxV Device Management .. 85

Table 77: Verification test of the UxV connection .. 86

Table 78: Verification test of Sensor Data Acquisition 1 .. 87

Table 79: Verification test of Sensor Data Acquisition 2 .. 88

Table 80: Verification test of Data Storage ... 89

Table 81: Verification test of Waypoints Processed .. 90

Table 82: Requirements considered for the integration ... 101

Error! Reference source not found.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

11

 The following table gives the abbreviations used across the RAWFIE projects in the

documents and deliverables.

 Table 1: Common abbreviations

Abbreviation Meaning

3D three-dimensional space

ACL Access Control List

AGL Above Ground Level

AHRS Attitude and Heading Reference System

AJAX Asynchronous JavaScript and XML

AM Aggregate Manager (of SFA)

AP Access Point

API Application Programming Interface

API Application programming interface

AT Aerial Testbed

AUV Autonomous underwater vehicle

B-VLOS Beyond Visual Line Of Sight

CA Certification Authority

CAA Civil Aviation Authority

CAO Cognitive Adaptive Optimization
CBNR Chemical Biological Nuclear Radiological

CEP Circular Error Probability

CPU Central Processing Unit

CSR Certificate Signing Request

DETEC Department of the Environment, Transport, Energy and Communication

DGCA Directorate General of Civil Aviation

DoA Description of Actions

EASA European Aviation Safety Agency

EC Experiment Controller

ECC Error Correction Code

ECV EDL Compiler & Validator

EDL Experiment Description Language

EDL Experiment Description Language

EER Experiment and EDL Repository

EU European Union

E-VLOS Extended Visual Line Of Sight

EVS Experiment Validation Service

FIRE Future Internet Research & Experimentation

FOCA Federal Office of Civil Aviation

FPS Frames Per Second

FPV First Person View

GAA German Aviation Act

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPIO General Purpose Input/Output

GPS Global Positioning System

GUI Graphical user interface

HD High Definition

HTTP Hypertext Transfer Protocol

HW Hardware

12

IAA Irish Aviation Authority

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IDE integrated development environment

IFR Instrument Flight Rules

IP Internet Protocol

ISO International Standards Organization

JDBC Java Database Connectivity

JSON JavaScript Object Notation

KPI Key Performance Indicator

KPI Key Performance Indicator

LBL Long Baseline

LDAP Lightweight Directory Access Protocol

LS Launching Service

MEMS MicroElectroMechanical System

MM Monitoring Manager

MSO Multi Swarm Optimization

MT Maritime Testbed

MOM Message Oriented Middleware

MVC Model View Controller

NAT Network Address Translation

NC Network Controller

NF Non Functional

ODBC Open Database Connectivity

OEDL OMF EDL

OMF cOntrol and Management Framework

OMF Orbit Management Framework

OML ORBIT Measurement Library

OS Operating System

OTA Over The Air

P2P Point to Point

PSO Particle Swarm Optimization

PTZ Pan Tilt Zoom

RC Resource Controller

RC Resource Controller

RE Requirement Engineering

REST Representational state transfer

RIA Research and Innovation Action

ROS Robot Operating System

ROV Remotely Operated Vehicle

RPA Remotely Piloted Aircraft

RPAS Remotely Piloted Aircraft System

RPS Remotely Piloted Station

RSpec SFA Resource Specification

SaaS Software as a Service

SAML Security Assertion Markup Language

SFA Slice-based Federation Architecture

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SQL Simple Query Language

SSO Single-Sign-On

SVN Apache Subversion

TM Testbed Manager

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

13

TMS Testbed Manager Suite

TP Testbed Proxy

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UI User Interface

UML Unified Modelling Language

USV Unmanned Surface Vehicle

UUV Unmanned Underwater Vehicle

UxV Unmanned aerial/ground/surface/underwater Vehicle

VE Visualization Engine

VT Vehicular Testbed

VT Visualization Tool

WCS Web Coverage Service

WFS Web Feature Service

WMS Web Map Service

WPS Web Processing Service

WSDL Web Services Description Language

XMPP Extensible Messaging and Presence Protocol

Table 2 gives the notations commonly used across the present document.

Table 2: Notations

Notation Description

DX.Y Deliverable X.Y from the DoW

MSX Milestone X from the DoW

WPX Work package X from the DoW

OCX Open Call X

AX.Y Activity number Y in Phase X

DLX.Y Deadline number Y in Phase X

MX Project month number X

A glossary is located at the end of this document in Annex, p. 95.

14

Part III: Executive Summary

The objective of this deliverable is to report about the results obtained during the tests of the

component interfaces and of the integration. It presents the identified enhancements of the

RAWFIE operational platform based on the aforementioned results. The document is an

evolutive document delivered in three phases/cycles according to the roadmap.

Chapter 1 presents the scope of the document, some definitions and abbreviations together

with the relation to other RAWFIE deliverables. Chapter 2 describes the interface and

verification tests performed on the RAWFIE components and system. Preliminarily, it

presents the approach and methodology used for describing, performing and reporting the

tests and integration verification. Based on the results obtained from the previous steps, the

roadmap followed by the RAWFIE project is impacted and the subsequent modifications and

improvements are listed in Chapter 3. Further customisations are briefly mentioned in

Chapter 4. A conclusion is drawn in Chapter 5.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

15

Part IV: Main Section

1 Introduction

1.1 Scope of D6.1

The scope of this document is to report about the integration of all components developed in

Tasks 5.1, 5.2 and 5.3, as well as their combined testing and customization. Specifically, this

undertakes the consolidation of several RAWFIE components in the three tiers of the

architecture.

This deliverable presents:

 The results of the integration of RAWFIE components in a unified platform and the

verification of the RAWFIE system (verifying the functionalities of the several

integrated components), in complement to the test and verification of individual

components that is supposed to be done in WP5;

 The integration activities (required technicalities, tests) that had been done and the

current results, mainly the activities that have been done to get a running system for

the 1
st
 review of the project, (i.e. obtained during the first development cycle);

 Technical issues and consolidation of the several RAWFIE components;

 Recording of the interface and verification tests and steps for supporting improvement

on the RAWFIE operational platform (such as enhancements that need to be

considered for the next iteration and the corresponding development plan).

Eventually, this document will report the results of the tests done at each testbed site

according to the integration, deployment and testing plans defined in WP2 after the

completion of each development cycle. These will include the analysis of the failures, errors,

user feedback and comments to modify and improve the respective RAWFIE components

and integrated system in the subsequent development cycles.

1.2 Definitions

This document makes use of a number of specific terms, which should be understood as

defined below:

 Verification of a system is the task of determining that the system is built according to

its specifications (functionalities according to requirements and design specifications);

 Validation is the process of determining that the system actually fulfills the purpose

for which it was intended (according to the users needs);

 Evaluation reflects the acceptance of the system by the end users and its performance

in the field, which eventually translates into usefulness (always according to users

needs and / or performances in the field against realistic scenarios).

16

1.3 Relation to other deliverables

The work performed in WP6 is based on the outcome of WP3 and WP4, as well as on WP5

activities, which performed the development and integration of components, according to the

roadmap described in D2.2.

The testing of the components interfaces and their integration, is based on the architecture

and design deliverables of WP4, and specifically on the verification scenarios and planning

presented in deliverable D4.3, with some modifications that will be highlighted in the

following of the document.

D6.1 provides feedback to WP5 (based on the results of the integration tests to be taken into

account in D5.3 and D5.4) for revisiting and improving the implementation of components

and their interaction in the global architecture. These results are also exploited by WP3 for

revising/extending the defined requirements and WP4 for revising the architecture in

subsequent iterations.

Although it is coarse grain, D2.2 is used for checking the completeness of D6.1 coverage.

D2.2 specifies the different rounds of development and the objectives in terms of function,

environment, etc. which directly defines the boundaries of the prototype integration or related

tasks (see sections 3.3 to 3.10). D6.1 reports on the integration steps and the verification of

components once combined with the rest of the RAWFIE system, before the submission of

this system to the validation process.

D6.1 refers explicitly to the Verification tests defined in D4.3 (section 5.1) for the component

testing at a high level. Nevertheless, in D6.1, the structure of the test descriptions has been

slightly revised to reflect the actual emphasis of the integration process on the interfaces,

dependencies and interactions between components. D6.1 deals with, and presents, the

interface testing results and the high-level testing results, following the templates shown

respectively in Table 1 and Table 2.

2 Integration & Testing

2.1 Approach

The objective of this activity is to produce an end-to-end operational prototype of the

RAWFIE platform that is used in testing pilots in the context of this specific task and,

ultimately in test cases selected through the open calls. The approach taken for the integration

follows the roadmap defined in D2.2. The integration process started at the very beginning of

the project inception and in its associated description of work, in which numerous design

choices have guided the initial steps of the project execution. From the start, the architecture,

shown in Figure 1, was progressively defined and refined leading to a number of interfaces,

pre-conditions, dependencies, etc. Figure 1 provides an overview of the involved components

and their interconnections. Each arrow represents an interaction point between two

components, reified by interfaces in the implementation. Each interface is an elementary part

of the integration, which, as for every component, is tested in pre-defined scenario.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

17

The evaluation of the component performance and of the conformance to its definition has

been first obtained by individually testing each of them independently in specific conditions,

exercising their interfaces. The components defined in WP4 and developed in WP5 have also

been progressively integrated into a coherent, complete and self-standing system.

As a result, the RAWFIE system, as integrated during the first phase of the project, was

tested and checked against the requirements gathered in WP3. Concurrently, other test results

have been obtained by:

- Use of simulations, simulated data resembling real data etc.

- Exercise of individual component interfaces

- Exercise of interfaces and components once combined, in intra-tier & inter-tier

integration tests

- Integration activities performed during experimentations using the prototype

- Remote control testing activities

- Etc.

D6.1 describes the results of such tests, in particular those done during internal review of the

platform and experimentation of the first prototype.

18

Figure 1: RAWFIE architecture (first iteration)

The following aspects represent the assets and basis, shared by all partners and work-

packages, for guaranteeing efficient and flexible research and development activities across

the different project cycles:

 Integration is performed at a data and interface level and by using existing tools and

mechanisms (standard data representations and models, REST, AVRO, Kafka, etc.),

allowing for a convenient and efficient decoupling of the components.

 In addition to provide a status of the integration, D6.1 is a testimony of the

progressive yet effective installation of a systematic approach allowing for the testing

of the integrated RAWFIE system at any point during the execution of the project.

This includes non-regression procedures and assessments, versioning, quality-control

procedure, etc.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

19

For example, The VT – VE communication is first tested by creating stubs in the VE that

provide information about the missing components and modules. They create a dummy data,

that the VE can forward to the VT and the VT can display. After implementing all of the

modules of the platform, these stubs are replaced by the real functions and the process is

repeated again. In that way we can define whether the problem is on the VE/VT side, or it is

in the other modules. The results from the different tests are observed with different tools like

http requests logger, database explorers, kafka listener and others. By using them we can

additionally check if the requests between the VT and VE are as specified. In case that

problems of any type arise, the system is updated and the tests are executed again until there

are no more problems. The same procedure is performed also for the rest of the

communication to and from the VE – with the database and with other modules through

kafka. The obtained results are successful for the first iteration of the platform.

Additionally non-developers perform black box testing on the VT. This includes trying the

complete functionality of the VT by executing every possible functionality of the VT without

knowledge of the underlying architecture, of the prerequisites of the platform and any other

requirement, that if not present, could lead to problems with the platform. The successful

execution of these tests guarantees tha t the VT is developed simply and intuitively and

adds an additional layer of security that all bugs are fixed. This test was also successful

System integration has a prerequisite that all internal integration activities and unit tests of

individual components is complete. At every phase, the successful intra-tier integration of the

various subcomponents is ensured before the initiation of the required procedures to complete

the inter-tier integration. System integration is tightly related to the testing and refinement

tasks that will result in the different releases of the system.

Before committing the modifications and ultimately delivering the RAWFIE system to the

evaluators and the customers, a number of typical situations, implemented under the form of

reference scenarios described in D4.3, are systematically (re)played. Their outputs are

examined to check if the functions and non-functional properties are still valid and/or within

the specifications.

During the next cycle, the RAWFIE components as well as the whole system will be

modified and improved according to new or updated requirements, specifications and bug

fixes. The RAWFIE system will also be customised to meet the requirements of applications

and customer preferences.

20

Figure 2: Integration, tests and validation process

The fact that the RAWFIE applications are highly dynamic and involve various testbeds and

UxVs of different natures at different places make the systematic verification and non-

regression tests complex and highly challenging. To cope with all that and the number of

UxVs that must be present and operational in such RAWFIE reference scenarios, simulators

can be used instead of real entities and actual deployments, in which numerous parameters

are used to allow for a variety of UxV natures, behaviours, characteristics and configurations.

Ultimately, through the funded (Open Calls) and non-funded experiments several external

experimenters should access and test the RAWFIE operational platform prototypes. These

tests should highlight any internal processes and modules of the prototypes that need further

refinements or improvements to reach to the best forthcoming interoperability of the

RAWFIE infrastructure modules; in parallel, the customisations may take place, which will

exercise the customisation mechanisms. All the involved technical partners analyse the user

comments and adapt the respective RAWFIE components accordingly in the subsequent

development cycle. The final outcome of the procedures and the participants’ efforts in this

task will be a stable RAWFIE platform that will be exploited from every interested

experimenter.

2.2 Methodology

Integration testing includes activities where individual software modules are combined and

tested as a group. It precedes validation testing and generally applies tests defined in an

integration test plan to aggregates or groups of unit-tested modules with the aim to deliver as

its output an integrated system ready for validation testing.

Integration activities follow the individual / unit testing activities performed (mainly in the

context of WP5) on the various components defined in the architecture deliverables (WP4

Development

Open calls

Integration Integration tests Prototype customisation

Stakeholder customisation Validation tests

Review of issues, problems,

needs, refinements, etc.

Redesign, development, etc.

https://en.wikipedia.org/wiki/Verification_and_validation_%28software%29
https://en.wikipedia.org/wiki/Test_plan
https://en.wikipedia.org/wiki/System_testing

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

21

D4.1 and D4.2), and are based on the integration testing plan (verification scenarios) defined

in D4.3. They aim to provide sufficient proof of correctness of functionality for combinations

of components at both platform and testbed tier and identify possible bugs and inefficiencies

in the foreseen workflow of RAWFIE platform services usage and the testbed processes. The

methodology adopted in RAWFIE for integration testing generally follows a bottom up

approach, in the sense that integration activities are performed initially pairwise with test

cases involving 2 components that directly communicate either synchronously or

asynchronously (via message bus) and then proceeding with more extensive test scenarios

involving interactions of multiple components that implement part or complete RAWFIE

workflows.

The integration tests involved the following major categories:

1. Testing of components interfaces (black box testing): This kind of black box

testing should be performed for all components implemented in the 1
st
 iteration cycle

that provide an interface (via a REST or SOAP / RPC API) or are capable to

send/receive data from Message Bus.

An interaction matrix has been created (see Table 4) which provides a quick reference

of all the interacting components (including the type of interaction) independent of the

tier they exist. Based on this matrix a detailed report was compiled (see section 2.4)

which elaborates on the exact interface or message exchange that was tested during

integration activities.

2. Execution/Testing of verification scenarios (1
st
 level of white box testing): This

step involved the execution of all the applicable (since some components were not

considered for the 1
st
 iteration) verification scenarios defined mainly in D4.3 section

5.1. Although these verification scenarios aim mainly to verify individual

components’ functionality in most cases, they have as pre-requisite the existence of

other components (tools or services). Therefore, despite the individual component

testing performed during implementation activities in WP5, the (re)execution of all

these verification scenarios was deemed necessary.

3. Execution of end to end scenarios (1
st
 level of system testing): This step involved

the execution of scenarios that address multiple components in all tiers and verify the

behavior of the system for its expected ‘real’ usage (i.e. the Booking of resources and

consequent execution and completion of an experiment). No such tests were

prescribed/foreseen for integration testing activities during the first iteration cycle. As

a consequence, this step will be done in the next cycles. It is however mentioned at

this point because it is an important part of the methodology, which should not be

overlooked.

Note: Performance tests and tests involving non-functional aspects of the RAWFIE system

were not considered as part of the integration activities and will not be included in the present

report.

Note: Because some components were not present in the first iteration, to be able to complete

the integration testing activities mentioned above certain assumptions/simplifications were

22

made in order to meet the prerequisites needed in each test scenario. These assumptions

mainly have to do with:

 The pre-existence of certain data in the RAWFIE database due to the fact that the

tool/service that was responsible for inserting/updating these data was not

implemented or partly implemented

 The fact that a limited number of components involved in the core experiment

workflow were not considered for implementation in the 1
st
 iteration cycle. Thus

these components (involving mainly interactions via message bus) had either to be

skipped during integration testing or considered to provide a default functionality

More precise information on the assumptions/simplifications made will be provided on a per

test case basis in sections 2.4 and 2.5 that provide details on the testing activities.

2.2.1 Test framework

Integration of components is performed in stages:

1. Intra-tier: addressing activities needed to integrate and test components in the same

tier (e.g. front-end, middle-tier, testbed);

2. Inter-tier: addressing activities needed to integrate and test components belonging to

2 different tiers;

3. System wide: addressing activities needed for verifying end to end interaction flows

(all tiers, end-to-end integration).

Inter-tier and Intra-tier stages involved both interface testing and functional (white box)

testing while the System wide stage focused only on functional aspects.

In order to allow for a common and concise way of representing the results of all kind of

integration tests, two templates were used, that are shown in Table 1 and Table 2:

Table 1: template for reporting interface test results

Component: <Component

Name>

Conducted by: <Partner

ID>

Date: Feb 2016 Test Category: Interface

testing

Preconditions Describe any general precondition that must be present (if any)

 Related Component Type Message or API Call Status Remarks/comments

1 <Component Name> R <Method Name> Not

applicable

E.g. component does not yet exists

2 <Component Name> M-c <Message Name> Partial

success

Message was consumed by

Resource controller since

Experiment Controller does not yet

exists

Message successfully received by

receiving component

M-c <Message Name> Not tested E.g. functionality not yet supported

3 Message Bus M-p <Message Name> Success E.g. connection to database

succeeded

Retrieval/update/insert of

information succeeded

4 <Component Name> JDBC <Method Name> Fail Describe reason of failure e.g.

connection to database fail

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

23

Regarding the above template:

 For message oriented communications (where the message bus acts as intermediate)

since we have producers and consumers, in the interface template we depict both of

them using the convention M-c, M-p so that it is clear that the producing component

sends to MessageBus and the consuming component receives the message

 For other types of synchronous interactions like REST, SOAP/ RPC, JDBC etc. it is

obvious that the interface template will refer to component that initiates the

communication (caller).

 Allowed status include: Success / Partial success / Fail / Not tested / Not applicable

 Success status is highlighted in green color, Partial Success in orange, while Not

tested / Not applicable are identified in grey

Generally we include information regarding interactions with the message bus by both

producers and consumers components. Interface of type M-p (that is the case the component

acts as producer) should not include any related component (or only “Message Bus”). The

rationale behind this is that the producer of an Avro message just sends to the bus agnostic of

which will receive it. This message will be received by multiple consumers and this

interaction is shown in the interface table of each receiver component including information

for the exact producer. Therefore, there is no need to replicate this for the producer by

including several similar rows.

The rationale of not specifying a related component when type of communication is M-p is

that this kind of communication is quite loosely coupled and in general it is not easy for the

producing component to know which target component will consume the message. There can

be one or many components but there is no reason i.e. to create 10 rows in the producer

component because the message will be consumed by 10 components.

This information is shown to the related component that acts as consumer (has type M-c).

In the case of interface testing that refers to communication between components, there are

no steps here, but only Success, Partial success, Fail or Not tested with a possible remark.

24

Table 2: template for reporting integration scenarios test results (example adapted from D4.3 test
case)

Test ID: MB02 Conducted by:

<Partner ID>

Date: Feb 2016 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Receive resource booking notification

Preconditions The user must have a registered email account belonging to the federation

 A long-term selection must be scheduled as launching selection with the

previous resource booking

Related Requirements (may not be present in integration tests)

Tools Used list any special or extra tools used beside code tests

Step Action Expected

Result

Status Remarks

1 Book any resource in order to carry on a

certain experiment in the near future

Reservation

data entries are

added to the DB

Success / Partial

success / Failed /

Not tested / Not

applicable

 list here any divergence from

initial foreseen action

2 Wait till the established date and time to

be launched

-

3 Verify that user has received the

corresponding notification regarding the

booking information and experiment

prepared

An email is

send to the user

4

Regarding the above template:

 HW and SW configuration may refer to RAWFIE Platform and/or testbeds. For the

platform case a common configuration was used in all integration activities which is

listed in section 2.3.1. For the testbeds and the UxV devices information can be found

in section 2.3.4.

 The field related to requirements may be omitted in this first iteration report. The

rationale is that integration tests generally are component level specific activities.

However, during the integration period (January – February 2016) the only available

requirements were the ones of D4.1 which were mainly high level system

requirements that aim to outline the overall behavior, services and performance

characteristics that the RAWFIE platform architecture should adhere to.

 Although the action field usually refers to a step that must be user initiated in certain

cases (to better illustrate the flow of activities) it is possible to include there activities

that are performed by a component (once or on a periodic basis) as a result of

previous resultField expected result might include a single or multiple outcome(s). In

the latter case the outcomes should be numbered accordingly in order to easily

distinguish them

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

25

 In the verification test, we use the nearly the same status labels Success / Partial

success / Failed / Not tested / Not Applicable (keeping in mind that partial success can

apply only in situation where a single step entails multiple results).

This addresses the verification of the component and system beyond the syntactical and static

analysis of the correct combination and matching of inter-component interfaces, initial

requirements and pre-conditions.

2.3 Integration environment setup (UoA)

This section describes the environment (depicted in Figure 3) used for the integration of the

RAWFIE components and sub-systems and the subsequent testing. This may include the

information, communication and computing infrastructure (servers, networks, etc.), the

configuration (component settings, credentials, etc.) and data repositories, the testbeds used

for testing and all other external services.

Figure 3: 1
st

 RAWFIE environment integration

2.3.1 ICT infrastructure (UoA)

Server Hardware Configuration (HW Configuration)

The RAWFIE platform infrastructure environment is based on rack-mount servers based on

dual Xeon E5-2603v2 2011 processors and equipped with RAID 1 SATA HDDs. Large

amount of RAM memory (16 GB or more) supports the virtualization of RAWFIE services.

The infrastructure for the first development phase of the RAWFIE platform is built on six

virtual machines (VMs). The main software for all the VMs is Ubuntu 14.04.3 LTS. The

access of the VMs is done through the SSH protocol at port 22. Users participating in the

development phase have access in the VMs with the same account as these have been set up

in an LDAP server.

26

Server Software Configuration (SW Configuration)

The six VMs run additional software as described below:

 VM1

o Postgresql 9.4.5: PostgreSQL is a powerful, open source object-relational

database system. This is where the main database of the RAWFIE platform

is setup. It includes the Postgresql user configuration for programmatical

access to the repository.

o PostGIS: PostGIS is a spatial database extender for PostgreSQL object-

relational database. It adds support for geographic objects allowing

location queries to be run in SQL.

 VM2

o JVM environment: Java 8 Oracle, where Tomcat8 server runs

o Tomcat8: Servlet and Web App Container providing the execution

environment for the following RAWFIE services:

 Web Portal: This is the main portal of the RAWFIE platform and

is a Java Servlet based application

 Testbed Directory Service: A RESTful web service providing the

software interfaces for getting access to information about Testbeds

and Resources from the PostgreSQL database.

 Experiment Authoring Tool: provides several modules used for

the definition and authoring of experiments,

 Launching Service: is responsible for initiating StartExperiment

requests either manually or on a scheduled basis. In the 1st iteration

only manual experiment initiation will be available.

 Visualisation Tool: is a web based application integrated into the

RAWFIE web portal in order to support visualization of predefined

data from EDL and visualisation of a real time data from UxVs.

 VM3

o Icingaweb2: Icinga is a scalable and extensible monitoring system. A

local postgresql has been used for the ease of Icinga installation.

o JNRPE: JNRPE is designed to allow the execution of Nagios plugins

based on Java for monitoring local resources on remote machines.

o Tomcat 7: Tomcat is used for the MkLivestatusApiProxy and

SystemMonitoringService application.

o Java 8: Java is used for both JNRPE and Tomcat.

 VM4

o Geoserver2.8.1: GeoServer is a Java-based software server that allows

users to view and edit geospatial data.

o Tomcat8: This is needed for the Geoserver application and hosts the

following service:

o Visualisation Engine: is responsible for receiving the data from the

movement of the UxVs, updating, converting and adjusting it and sending

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

27

it to the visualisation tool so that it can be presented to the user and hosts

the following service:

 Visualisation Engine: is responsible for receiving the data from the

movement of the UxVs, updating, converting and adjusting it and

sending it to the visualisation tool so that it can be presented to the

user.

o Java 7 open jdk: This is used for both Tomcat and Geoserver support

 VM5

o Confluent-platform-2.11.5: The Confluent Platform is a stream data

platform that provides access to the RAWFIE Message Bus. Confluent

platform is expected to offer all components (Apache Kafka broker,

Apache Kafka clients, Schema Registry) needed to realise a scalable, high

throughput communication bus between components. Confluent is a

collection of services, tools, and guidelines for making all of RAWFIE's

data available as real-time streams.

o Docker: Docker allows you to package an application with all of its

dependencies. It is mainly used to provide local UxVs software simulators

providing sensor measurements in order to stress the Kafka installation.

o Java 8

 VM6

o Phppgadmin: A web-based GUI for accessing the rawfie_db at VM1

2.3.2 Data repositories

A PostgresSQL DB was installed in VM1 with the name rawfie_db. The schema has been

described in the D5.1 and is consistent to the specification of the RAWFIE data model

design. For the first development period the following tables were used by RAWFIE

component. These tables offered information to the respective components about users,

experiments, reservation status and measurements. The following table contains the name of

the entity that is defined in RAWFIE data model, the components that utilize this information

and the status of usage (if each component was used in the first development period or not).

More details for the repositories and their attributes can be found in section 2.3 - “RAWFIE

Data Model Design” of deliverable D5.1.

Table 3: Usage status of Rawfie components

Entity Rawfie Components Used

User Web Portal, LDAP client, Users and Rights Service,

Visualisation Engine

Not

VT_Settings Visualisation Engine Not

Experiment Booking Service, Experiment Monitoring Tool, Launching

service, Visualisation Engine

Yes

Experiment

Execution

Experiment Monitoring Tool, Launching Service,

Visualisation Engine

Yes

ExperimentLog Testbed Manager Not

ExperimentStatus Visualisation Engine Yes

28

Algorithms Experiment Validation Service, EDL Compiler Yes

EDLScript Experiment Authoring Tool, Experiment Validation Service,

EDL Compiler, Visualisation Engine
Yes

Reservation Booking Service, Experiment Monitoring Tool Yes

ReservationItem Booking Service, Experiment Monitoring Tool, Launching

Service, Visualisation Engine

Yes

Testbed Testbed Directory Service, Resource Explorer Tool, Testbed

Manager

Yes

Resource Testbed Directory Service, Resource Explorer Tool,

Visualisation Engine

Yes

ExperimentResou

rceConfig

Testbed Manager No

ConfigParameters Testbed Manager No

Message Resource Controller No

Sensor Experiment Validation Service, EDL Compiler, Visualisation

Engine

Yes

Health_status_lut System Monitoring Tool/Service Yes

Connection Experiment Validation Service, EDL Compiler Yes

Data used for integration was mainly inserted manually by issuing SQL inserts, as several

tools to this via the RAWFIE Web Portal will be implemented in the next interaction phase.

2.3.3 Message Bus data format

The data model on the message bus is a key element for the integration at all levels and

interoperability of component instances. The schema of all messages was defined via AVRO

schemas described in section 4.3 1 of deliverable D5.1 that were generated out of Java

classes. The schemas are managed in a GIT repository, so that all developers can access and

use them in their components to implement the integration of the message bus.

2.3.4 Testbeds and configurations

This section describes the testbeds used for the real life tests and the integration between

testbeds (UxV and associated infrastructure) and the cloud (services and UI tools). It

describes what integration activities were carried out so far.

A first configuration involved UxV simulators: MST on-board software DUNE was used to

simulate MST vehicles and the GAZEBO simulator used within the ROS users community to

simulate Robotnik’s vehicles. This first step was necessary to test the interaction of RAWFIE

components without the need of actual robots.

The efforts have been directed to test the interface developed with the common frame for

RAWFIE, especially the message bus and the customized messages, commands and data

format in general. Eventually, the following items were developed, tested, and integrated:

 Message definition and serialization using the Apache Avro data serialization system

 Publishing/subscribing messages to/from the Kafka message bus

 Reachability of nodes and services

 The Kafka-Robot adapter to support Robotnik’s robots

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

29

 The OceanScan Proxy service to support MST vehicles

A second step consisted of replicating this working configuration in the real robots, in

particular Robotnik’s, as no modifications were made to the on-board software of MST

vehicles and the OceanScan Proxy treats simulated and real vehicles indistinguishably as both

have the exact same API. Robotonik’s integration effort involved using Kafka Python and

Python confluent-schema-registry stack. MST integration effort involved using Kafka Java

0.8.2.1, Kafka Scala 2.10, and Confluent 1.0. Both integration efforts used Apache Avro

1.7.7

The temporary infrastructure of the Porto testbed, whose network topology is depicted in

Figure 4, comprised the following components:

 One Robotnik’s SummitXL UGV equipped with temperature and pressure sensors,

laser scanner, and cameras. This robot connected to the testbed infrastructure using a

auxiliary 2.4 GHz 802.11n radio deployed specifically for the integration tests. This

asset is represented as “UGV 0” in the network topology diagram.

 Two Light Autonomous Underwater Vehicles (LAUVs) equipped with Conductivity,

Temperature, Rhodamine Dye, Chlorophyll, Phycocyanin, Phycoerythrin, and

Fluorescein sensors; active dual frequency sonar and high definition camera.

Communication with the Manta gateway was performed using a 2.4 GHz 802.11n

radio link and 25 kHz acoustic modem. These assets are represented as “AUV 0” and

“AUV 1” in the network topology diagram.

 One Durius Autonomous Surface Vehicle (ASV) equipped with camera.

Communication with the Manta gateway was performed using a 2.4 GHz 802.11n

radio link. This asset is represented as “ASV 0” in the network topology diagram.

 One Manta gateway with WHOI Micromodem Acoustic Modem and one 2.4 GHz

802.11n radio with an omnidirectional antenna. This asset is represented as “GW” in

the network topology diagram.

 One 2.4 GHz 802.11n radio with builtin 90º sector antenna, connected to the MST

network infrastructure and to the Internet through a firewall. These assets are

represented in the network topology diagram as “LAN-GW”, “LAN”, and “Firewall”

respectively.

30

Figure 4: Architecture of the UUV+UGV setup

2.4 Integration Test Results

This paragraph provides details on the testing activities performed on components that have

been grouped into specific hardware and software configurations.

The list of components that were integrated and for which the interfaces between components

were tested is given in Table 4. In Table 4, each cell represents an interface that was tested.

This cell is used by the two components at the cross lines: each client component, or caller of

one or many services interfaces, is represented in the rows, while the called component or

service interface/s is represented in the columns. In other words, the cell represents what

component in the respective row is calling the interface of the component that is specified in

the respective column: “the row item calls (or triggers) the item in the column”.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

31

Table 4: interface interaction matrix

r

W
eb

 P
o

rt
al

W
ik

i

R
es

o
u

rc
e

Ex
p

lo
re

r
To

o
l

B
o

o
ki

n
g

To
o

l

Ex
p

er
im

en
t

A
u

th
o

ri
n

g
To

o
l

Ex
p

er
im

en
t

M
o

n
it

o
ri

n
g

To
o

l

Sy
st

em
 M

o
n

it
o

ri
n

g
To

o
l

U
xV

 N
av

ig
at

io
n

 T
o

o
l

V
is

u
al

iz
at

io
n

 T
o

o
l

D
at

a
A

n
al

ys
is

 T
o

o
l

ED
L

C
o

m
p

ile
r

&
 V

al
id

at
o

r

Ex
p

er
im

en
t

V
al

id
at

io
n

 S
er

vi
ce

U
se

rs
 &

 R
ig

h
ts

 S
er

vi
ce

B
o

o
ki

n
g

Se
rv

ic
e

La
u

n
ch

in
g

Se
rv

ic
e

Ex
p

er
im

en
t

C
o

n
tr

o
lle

r

D
at

a
A

n
al

ys
is

 E
n

gi
n

e

Sy
st

em
 M

o
n

it
o

ri
n

g
Se

rv
ic

e

Te
st

b
ed

s
D

ir
ec

to
ry

 S
er

vi
ce

A
cc

o
u

n
ti

n
g

Se
rv

ic
e

V
is

u
al

is
at

io
n

 E
n

gi
n

e

M
as

te
r

D
at

a
R

ep
o

si
to

ry

U
se

rs
 &

 R
ig

h
ts

 R
ep

o
si

to
ry

M
ea

su
re

m
en

ts
 R

ep
o

si
to

ry

R
es

u
lt

s
R

ep
o

si
to

ry

Te
st

b
ed

 M
an

ag
er

M
o

n
it

o
ri

n
g

M
an

ag
er

N
et

w
o

rk
 C

o
n

tr
o

lle
r

R
es

o
u

rc
e

C
o

n
tr

o
lle

r

N
av

ig
at

io
n

 S
er

vi
ce

U
xV

 n
o

d
e

U
xV

 -
 N

et
w

o
rk

 c
o

m
m

u
n

ic
at

io
n

U
xV

 –
 S

en
so

rs
 &

 L
o

ca
liz

at
io

n

U
xV

 –
 O

n
 b

o
ar

d
 s

to
ra

ge

U
xV

 –
 O

n
 b

o
ar

d
 p

ro
ce

ss
in

g

U
xV

 –
 D

ev
ic

e
m

an
ag

em
en

t

U
xV

 –
 P

ro
xi

m
it

y
co

m
p

o
n

en
t

Web Portal O

Wiki

Resource Explorer Tool R R

Booking Tool R R

Experiment Authoring Tool O O R O

Experiment Monitoring Tool R R R O

System Monitoring Tool R

UxV Navigation Tool M M M

Visualization Tool O M M M M

Data Analysis Tool M

EDL Compiler & Validator O

Experiment Validation Service O

Users & Rights Service O

Booking Service O

Launching Service R R M O

Experiment Controller M M M

Data Analysis Engine M O

System Monitoring Service

Testbeds Directory Service O

Accounting Service

Visualisation Engine O M O O

Master Data Repository O O

Users & Rights Repository

Measurements Repository

Results Repository O

Testbed Manager M

Monitoring Manager

Network Controller

Resource Controller M M M M

Navigation Service

UxV node M M M M

UxV - Network communication M M M

UxV – Sensors & Localization M M M

UxV – On board storage

UxV – On board processing M

UxV – Device management

UxV – Proximity component

MessageBus M

Rest R

SOAP S

Other O

Success

Partial Success

Fail

Not Tested

Not applicable

32

Table 5 - Interface types used in interface testing

Type Description

M-c Message bus consumer (receives messages from the message bus)

M-p Message bus producer (sends messages to the message bus)

REST or R REST (via HTTP) web service

SOAP or S SOAP web service

LDPA or L LDPA

JDBC or J JDBC

Note: For interface of type M-p, a related component is not included (or only “Message Bus”

is mentioned). This is for example the case when the component acts as producer. The

rationale behind this is that the producer of an Avro message just sends to the Bus agnostic of

which will receive it. This message may be received by multiple consumers and this

interaction will be depicted in the interface table of each receiver component including

information for the exact producer. Therefore there is no need to replicate this for the

producer by including several similar rows.

Figure 2 shows the complete architecture devised the first phase of the project. The

components enclosed in the area have been prototyped, integrated and tested.

Figure 5: RAWFIE architecture (first version) and current integration coverage

2.4.1 Front-end integration

In the front-end tier, the following components were integrated:

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

33

- Web Portal

o Login via User and Rights Service

o Tools mentioned below where integrated into the website.

- The System Monitor Tool:

o Displayed successfully the status of the testbed and the servers of the cloud

environment. Status information was delivered by the System Monitoring

Service

- Visualisation Tool

o Checking that the interaction from VT delivers the expected results – listing

the available experiments, starting the visualisation of an experiment, showing

the data of the UxVs on the map and showing the movement and the sensor

values being updated in real time

- Resource Explorer Tool

o Displayed successfully the resource data delivered by the Testbed Directory

Service

- Data Analysis Tool

o Displays the UI to write manual ML job (or use predefined one)

 This is currently in progress

o Access to results database [via graphite UI] to show results of previous

experiments

- Experiment Authoring Tool (Textual EDL Editor)

o Loading, editing and saving of EDL scripts worked

o EDL Compiler and Validator integration worked: Highlighted syntactical and

semantic errors

o Manual launching not implemented. Launching of scripts done via internal

API.

Table 6: Test of the Web portal interfaces

Component: Web Portal Conducted by:

Fraunhofer

Date: Feb 2016 Test Category: Interface

testing

Preconditions Users are entered in the User & Rights Repository

Related Component Type Message or API Call Status Remarks/comments

1 User & Rights Repository LDAP Lookup Success Lookup user with the given password

from the login page worked

34

Table 7: Test of the Resource explorer interfaces

Component: Resource

Explorer

Conducted by:

Fraunhofer

Date: Feb 2016 Test Category: Interface

testing

Preconditions Resources are entered in the Master Data repository

Related Component Type Message or API Call Status Remarks/comments

1 Testbeds Directory Service REST getResources Success More filtering criteria for the selection

of resources/UxVs may be useful in a

subsequent iteration

2 getAllResources Success Got all resources/UxVs

3 getTestbeds Success More filtering criteria for the selection

of testbeds may be useful in a

subsequent iteration

4 getAllTestbeds Success Got all testbeds

5 Booking Tool HTTP Redirect to page Not

tested

Booking Tool was not implemented

Table 8: Test of the System Monitoring Tool interfaces

Component: System

Monitoring Tool

Conducted by: Fraunhofer Date: Feb 2016 Test Category: Interface

testing

Preconditions System Monitoring Service collected some data

Related Component Type Message or API Call Status Remarks/comments

1 Testbeds Directory

Service

REST getComponentServiceHealths Success Got all health statuses

Table 9: Test of the Visualisation Tool interfaces

Component: Visualisation

Tool

Conducted by: Epsilon Date: Feb 2016 Test Category: Interface

testing

Preconditions User must be logged in to the portal

 Related Component Type Message or API

Call

Status Remarks/comments

1 Visualisation Engine Webs

ocket

startExperiment Success Connect to the visualisation engine and

retrieve all the information about an

experiment and get data for the

movement of the UxVs

2 stopExperiment Success Stop the visualisation of an experiment

3 getExperiments Success List all available experiment for the

user

4 getExperimentDetails Success Get the details for an experiment that

the user wants to visualise

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

35

Table 10: Test of the Data Analysis Tool interfaces

Component: Data Analysis

Tool

Conducted by: HESSO Date: Feb 2016 Test Category: Interface

testing

Preconditions User must be logged in

 Resources must be associated with a user

 Resources must be associated with an experiment

 Message Bus must be up and schema registry must be accessible

 Results database must be accessible

 Related Component Type Message or API Call Status Remarks/comments

1 Data Analysis Engine M-c buildJob() Not

tested

Working on the interfacing of the UI

with the Bus stream.

2 Results Database REST render() Success Graphite is able to be queried via REST

and plots results

3 Data Analysis Engine M-p Success Send the Analytics jobs to the Data

Analysis Engine through the Kafka

message bus

Table 11: Test of the Experiment Authoring Tool interfaces

Component: Experiment

Authoring Tool

Conducted by: UoA Date: Feb 2016 Test Category: Interface

testing

Preconditions Users are entered in the RAWFIE Web Portal

Related Component Type Message or API Call Status Remarks/comments

1 Textual and Visual editors - - Success Textual and visual editors are smoothly

incorporated in the RAWFIE Web

Portal

2 Launching service REST manualStart Success Launching tool is correctly informed

about the ID of the experiment that will

be executed

3 Experiment validation

service

- - Success Compilation and validation are

smoothly executed in the authoring tool

Missing Components

The following components are not yet implemented and they were not tested:

- Experiment Monitoring Tool

- Booking Tool

- UxV Navigation Tool

They will be implemented in the next implementation iteration.

36

Table 12: Interface test of the Booking Tool

Component: Booking Tool Conducted by: Date: Test Category: interface

testing

Preconditions User must be logged in

 UxV resources must be present in a testbed and advertised to the platform

(browseable by the resource explorer tool)

 Booking Service must be up and running

 Testbed Directory Service must be up and running

 Related Component Type Message or API Call Status Remarks/comments

1

Booking Service

R addBooking Not

tested

Booking Tool not implemented

2
R editBooking Not

tested

Booking Tool not implemented

3
R deleteBooking Not

tested

Booking Tool not implemented

4
R getBookings Not

tested

Booking Tool not implemented

5
R getBooking Not

tested

Booking Tool not implemented

6 Testbed Directory Service
R getResources Not

tested

Booking Tool not implemented

2.4.2 Middle tier integration

In the front-end tier, the following components were implemented and integrated:

- System Monitoring Servcie:

o Status data from the cloud servers and testbeds where collected successfully

- Testbed Directory Service

o Data from the Master Data repository war accessible via the service

- EDL Compiler and Validator:

o Validated scripts: Delivered error messages for incorrect ones

o Compiled Scripts for later execution

- User & Rights Service

o Checking of Login credentials loaded from the User & Rights repository

workd

o Checking of roles/rights not tested with other components

- Data Analysis Engine

o Receive a job description from the Data Analysis Tool and build a job that can

be passed to Spark.

o Provides a mechanism to return result status to the Data Analysis Tool.

- Launching Service

o Manual Start of an experiment

o Generation of ExperimentStartRequest, ExperimentCancelRequest JSON

messages and communication with MessageBus

- Visualisation Engine

o Checking the communication with the database – for reading and writing

sensor data, list of experiments, users etc. to and from the database

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

37

o Checking the communication with kafka for commucation with the other

modules – obtaining real time data of the movement of the UxVs like position

and sensor data

o Checking the communication between the VT and VE – all requests from VT

should be handled properly and the results from kafka or the database, should

be sent back to the VT

38

Table 13: Test of the Testbed Directory Service interfaces

Component: Testbed

Directory Service

Conducted by: IES Date: Feb 2016 Test Category: interface

testing

Preconditions Testbeds and Resources tables, as well as all related tables with linked information about

testbeds and resources, are present in the Master Data Repository (PostgreSQL DBMS)

Related Component Type Message or API Call Status Remarks/comments

1 Master Data Repository

(PostgreSQL database)

JPA -

JDBC

Interaction

insertTestbed Success Operation performed by a

RepositoryHandler class, to

support the createTestbed()

REST API

2 updateTestbed Success Operation performed by a

RepositoryHandler class, to

support the editTestbed() REST

API

3 deleteTestbed Success Operation performed by a

RepositoryHandler class, to

support the deleteTestbed()

REST API

4 insertResource Success Operation performed by a

RepositoryHandler class, to

support the createResource()

REST API

5 updateResource Success Operation performed by a

RepositoryHandler class, to

support the editResource() REST

API

6 deleteResource Success Operation performed by a

RepositoryHandler class, to

support the deleteResource()

REST API

7 fetchTestbed Success Operation performed by a

RepositoryHandler class, to

support the searchTestbed()

REST API (get details about a

specific testbed)

8 fetchTestbeds Success Operation performed by a

RepositoryHandler class, to

support the getTestbeds() REST

API (get details about the

specified testbeds)

9 fetchResource Success Operation performed by a

RepositoryHandler class, to

support the searchResource()

REST API (get details of a

specific resource from a specific

testbed)

10 fetchResourcesTestbed Success Operation performed by a

RepositoryHandler class, to

support the getResources() REST

API (to get details of all

resources from a specific testbed)

11 fetchResourcesAvailable Success Operation performed by a

RepositoryHandler class, to

support the

getAvailableResources() REST

API (get details of all resources

which are AVAILABLE for

booking tests from a specific

testbed)

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

39

Table 14: Test of the Visualisation Engine interfaces

Component: Visualisation

Engine

Conducted by: Epsilon Date: Feb 2016 Test Category: interface

testing

Preconditions User must be logged in to the portal

 Measurements and Results repository should be available

 Kafka should be available with the necessary topics

Related Component Type Message or API Call Status Remarks/comments

1 Master Data Repository

(PostgreSQL database)

JDBC SQL Success Get Experiment Status

 Message Bus ExperimentStart(Exec

Id, Script)

Read UxVStatus

Read UxVActual

Position

Read UxVCommands

Success Real data from the devices

2 Visualisation Tool Websocke

t

startExperiment Success Connect to the visualisation engine

and retrieve all the information about

an experiment and get data for the

movement of the UxVs

3 stopExperiment Success Stop the visualisation of an experiment

4 getExperiments Success List all available experiment for the

user

5 getExperimentDetails Success Get the details for an experiment that

the user wants to visualise

6 Experiment Controller M-c getGoTo Success Get the Goto Commands, Experiment

Controller is not yet implemented so

we consume the message from the

Resource Controller

7 UxV Node M-c getUxVData Partial

Success

Get the location and sensor data from

the UxVs. Not all sensor data is

implemented yet.

Table 15: Test of the Data Analysis Engine interfaces

Component: Data Analysis

Engine

Conducted by: HESSO Date: Feb 2016 Test Category: Interface

testing

Preconditions User must be logged in

 Resources must be associated with a user

 Resources must be associated with an experiment

 Message Bus must be up and schema registry must be accessible

 Results database must be accessible.

 Related Component Type Message or API Call Status Remarks/comments

1 Data Analysis Tool M-c sendJob() Not

tested

Working on the interfacing of the UI

with the Bus stream.

2

Schema Registry R /subjects Success Successfully iterate over all schemas

40

Table 16: Test of the Launching service interfaces

Component: Launching

Service

Conducted by: HAI Date: Feb 2016 Test Category: interface

testing

Preconditions User must be logged in

 An experiment must be present for a user

 Resources must be associated with a user

 Resources must be associated with an experiment

 Message Bus must be up and configured with appropriate topics

(ExperimentStartRequest topic, ExperimentCancelRequest topic)

 Related Component Type Message or API Call Status Remarks/comments

1 Experiment Validation

Service

R validateExperiment Not

tested

Experiment Validation Service does not

yet exists

2 Experiment Controller M-p ExperimentStartRequest Success Message was sent successfully to

Message Bus.

However, it was consumed and handled

by Resource controller since

Experiment Controller does not yet

exists

3 M-p ExperimentCancelReque

st

Success Message was sent successfully to

Message Bus

However, there is no component yet

implemented to consume and handle

the message

4 Master Data Repository JPA/J

DBC

Database Interaction Success Connection to database succeeded

Retrieval/update/insert of information

succeeded

2.4.2.1 Missing components

The following components are not yet implemented and they were not tested nor integrated.

They will be considered for integration and test in the next implementation iteration.

Nevertheless, interface tests have been defined, as reflected in the tables below.

- Booking Service

- Experiment Controller

Table 17: Test of the Booking Service interfaces

Component: Booking Service Conducted by: Date: Test Category: interface

testing

Preconditions User must be logged in

 UxV resource info must be present in a Master Data Repository

 Related Component Type Message or API Call Status Remarks/comments

1 Master Data Repository JPA/J

DBC

Database call (insert) Not

tested

Booking Service not implemented

2 JPA/J

DBC

Database call (update) Not

tested

Booking Service not implemented

3 JPA/J

DBC

Database call (delete) Not

tested

Booking Service not implemented

2.4.3 Testbed integration

The test of the interfaces of the different testbed components concerns:

 The Tesbed Manager

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

41

o Interface with the System Monitoring Service is ok,

o Implemented interfaces with the Experiment Controller are ok, although they

may be improved,

o Others are not implemented yet.

 The Resource Controller

o Implemented interfaces with the Message bus are ok.

Table 18: Test of the Tesbed Manager interfaces

Component: Testbed

Manager

Conducted by: HAI Date: February 2016 Test Category: interface testing

Preconditions Apache Kafka properly configured, up and running

 Related components must be up and running

Related Component Type Message or API Call Status Remarks/comments

1 System Monitoring

Service

M-p TestbedHealthStatus Success System Monitoring properly consumes

the message that describes the current

health of the machine running the

Testbed Manager

2 Resource Controller M-c ExperimentStatus Not tested Resource Controller does not produce

ExperimentStatus message yet

3 UxV Node M-c UxVHealthStatus Not tested UxV Node does not produce

UxVHealthStatus message yet

4 Experiment Controller M-c ExperimentStart Success Experiment Controller does not yet

exists - message sent from Launching

Service

5 M-c ExperimentStop Not tested Experiment Controller does not yet

exists – message not yet implemented

6 M-c ExperimentCancel Success Experiment Controller does not yet

exists - message sent from Launching

Service

Table 19: Test of the Resource Controller interfaces

Component: Resource

Controller

Conducted by: CERTH Date: Feb 2016 Test Category: interface

testing

Preconditions Apache Kafka properly configured, up and running

Related components must be up and running

Related Component Type Message or API Call Status Remarks/comments

1 Message Bus M-p WriteHealthStatus Not tested Send and receive real-time information

to resources

M-p WriteUxVCommands Success Send and receive real-time information

to resources

M-p WriteExperimentStatus Not tested Resource Controller does not write

Experiment status yet

M-c ReadUxVStatus Not tested Resource Controller does not read

UxV status yet

M-c ReadUxVLocation Success Resource Controller is able to read the

actual position of the vehicles

Regarding the UxV’s, the following components were integrated:

42

 UxV Node

o Message bus adaptor working

o Robots accepting waypoints and commands.

o Robots publishing localization and odometry

 UxV Sensor&Localization

o Interface to sensors working

o Publishing values and identifying the sensor

Table 20: Test of the UxV Node interfaces

Component:UxV

Node

Conducted by:

Robotnik, MST

Date: Feb 2016 Test Category: interface testing

Preconditions A server running the Confluent platform

 Robotnik’s specific preconditions:

 The necessary topics should be already registered

 A server running the Confluent platform should be available with the necessary topics

 Input from the resource controller

 Reliable Internet connection

 Related

Component

Type Message or API

Call

Status Remarks/comments

1
Resource Controller M-c Goto Success GPS coordinates accuracy and threshold for next waypoint needs to

be configured

2
KeepStation Partial

Success

Tested with success by MST

3
Abort Partial

Success

Tested with success by MST

4 Location Success Without GPS specifying an origin of coordinates is needed.

5
Visualization Tool M-c Location Partial

Success

Visualization indoors needs revision to offer a descriptive

environment

6
Data Analytics

M-c SensorReadingScalar Partial

Success

Tested Temperature, Salinity, Conductivity, and SoundSpeed with

success

7
Current Partial

Success

Tested with success by MST

8
Voltage Partial

Success

Tested with success by MST

9
StorageUsage Partial

Success

Tested with success by MST

10
FuelUsage Partial

Success

Tested with success by MST

11
CpuUsage Partial

Success

Tested with success by MST

12
SensorInfo Partial

Success

Tested with success by MST

2.4.4 Inter-tier integration

Components belonging to different tiers may communicate also through the Message-bus or

other external means.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

43

Table 21: Test of the EDL Compiler and Validator interfaces

Component: EDL Compiler

and Validator
Conducted by: UoA Date: Feb 2016

Test Category: Interface

testing

Preconditions
Users are entered in the RAWFIE Web Portal

Related Component Type Message or API Call Status Remarks/comments

1 Textual and Visual editors - - Success
Textual and visual editors smoothly

communicate with the validator

2.4.5 End-to End Integration

Table 22 shows an end-to-end integration scenario with the supported functionalities of the

first implementation cycle. The steps of this integration offer the means for experiment

authoring, deployment, execution and data analysis. The same scenario was successfully

performed on UxV simulators, three UUVs of MST and on one UGV vehicle of Robotnik.

44

Table 22: Test of the interfaces involved in end-to-end integration

Component: ALL Conducted by: Partners Date: February 2016 Test Category:

interface testing end-

to-end

Preconditions Apache Kafka properly configured, up and running

 Related components must be up and running

 Testbeds and Resources tables, as well as all related tables with linked

information about testbeds and resources, are present in the Master Data

Repository (PostgreSQL DBMS)

 Users are entered in the User & Rights Repository

Component Related

Components

Type Message or API Call Status Remarks/comments

1 Web Portal User & Rights

Repository

LDAP Lookup Success Experimenter logins

through the web portal

2 Resource

Explorer

Testbeds

Directory

Service

REST getAllResources

getAllTestbeds

Success The Experimenter checks

available Testbeds and

Resources

3

Experiment

Authoring Tool

Textual and

Visual editors

 - Success Experimenter writes,

validates and launches an

experiment. Launching

service

REST manualStart Success

Experiment

validation

service

 - Success

4 Resource

Controller

UxV Node Message

Bus

WriteUxVCommands,,

ReadUxVLocation

Success Resource Controlelr

starts an experiment. RC

sends commands to UxVs

and receives real-time

information
5 UxV Node Resource

Controller

Message

Bus

ReadUxVCommands,,

WriteUxVLocation

Success GPS coordinates

accuracy and threshold

for next waypoint needs

to be configured

6 Visualization

Tool

Visulization

Engine

Websocket startExperiment,

stopExpement,,

getExperiments,

getExperimentDetails

Success Experimenter sees

information on runnning

experiment (e.g.

resources waypoints)

through the Web Portal
Resource

Controller

UxV Node

Message

Bus

getGoTo Success

7 Data Analysis

Tool

Data Analysis

Engine

Message

Bus

- Success Experimenter performs

outlier detection through

the data analytics tools

Send the Analytics jobs

to the Data Analysis

Engine through the Kafka

message bus

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

45

2.5 Verification scenarios results

In this section, the results of the executed verification scenarios of D4.3 (chapter 5) are

explained. The template table, given and explained in section 2.2.1, was extended to better

visualise the scenario steps and the results of them.

2.5.1 Web Portal (Graphical User Interface)

2.5.1.1 Web Portal

Table 23: Verification test of the Web Portal - Login/ Logout

Test ID: WP01 Conducted by:

Fraunhofer

Date: Feb 2016 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Web Portal - Login/ Logout

Preconditions User entered in the User & Rights repository

Related Requirements

Tools Used Browser

Step Action Expected Result Status Remarks

1 user opens RAWFIE any web page redirect to login page,

login form displayed

Success

2 user enters invalid credentials and submits

the form

error message

displayed

Success

3 user enters valid credentials and submits

the form

redirect to start page Success

4 user press the logout button redirect to login page,

login form displayed,

logout message

displayed

Success

Table 24: Verification test of the Web Portal – Language selection

Test ID: WP02 Conducted by:

Fraunhofer

Date: Feb 2016 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Web Portal – Language selection

Preconditions Translation available

Related Requirements

Tools Used Browser

Step Action Expected Result Status Remarks

1 user opens RAWFIE any web page web page with

language selection

displayed,

Success

2 user changes the language web page displayed in

the selected language

Partial

success

Language is changed, but

only a few text are translated

(missing translations)

46

2.5.1.2 System Monitoring Tool

Table 25: Verification test of the Visualisation of system and UxV health status

Test ID: SMT01 Conducted by:

Fraunhofer

Date: Feb 2016 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Visualisation of system and UxV health status

Preconditions connection to the System Monitoring Service (may not be necessary if

System Monitoring Service collects all necessary data anyway)

 administrative knowledge about the system state needed on user side (to

check results)

Related Requirements

Tools Used Browser

Step Action Expected Result Status Remarks

1 user opens System Monitoring Tool in the

Web Portal

the System

Monitoring Tool

displays views with

status of, middleware

components, testbeds

components, UxVs

components

Partial

success

Servers and Testbeds

displayed.

UxVs did not send status

information (to be

implemented)

2.5.1.3 Resource Explorer Tool

Table 26: Verification test of the Browse testbeds and UxVs and start booking

Test ID: RET01 Conducted by:

Fraunhofer

Date: Feb 2016 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Browse testbeds and UxVs and start booking

Preconditions connection to the Testbeds Directory Service OK

 data about testbeds and UxVs available

Related Requirements

Tools Used Browser

Step Action Expected Result Status Remarks

1 user opens Resource Explorer Tool in the

Web Portal

Resource Explorer

Tool displays a view

with all available

testbeds

Success

2 user selects a testbed Resource Explorer

Tool displays all

testbed details and a

list of available UxVs

Success

3 user selects a UxV Resource Explorer

Tool displays all UxVs

details

Success

4 user starts booking Not tested Not implemented

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

47

2.5.1.4 Experiment Monitoring Tool

Table 27: Verification test of the Visualisation of experiment status

Test ID: EMT01 Conducted by:

Fraunhofer

Date: Feb 2016 Test Category: Verification

Tests (front end tier)

Hardware Configuration -

Software Configuration -

Test Name: Visualisation of experiment status

Preconditions connection to the Launching Service ok

 knowledge about the experiments state needed on user side (to check results)

Related Requirements

Tools Used Browser

Step Action Expected Result Status Remarks

1 user opens Experiment

Monitoring Tool in the Web

Portal

Experiment Monitoring Tool

displays a view with all

experiments of the current user

(ordered by date descending). The

list also contains a sort summary of

the experiments state

Not tested Not implemented

2 user selects a experiment Experiment Monitoring Tool

displays all experiment details

(date / timespan; related testbed;

list of used UxVs; execution state ;

link to the used EDL)

Not tested Not implemented

4 user starts booking Not tested Not implemented

2.5.1.5 Booking Tool

Table 28: Verification test of the Visualisation of booking status

Test ID: BT01 Conducted by: Date: Test Category: Verification

Tests (middle tier)

Hardware Configuration -

Software Configuration -

Test Name: Visualisation of booking status

Preconditions connection to the Booking Service ok

 user opened Booking Tool though the Resource Explorer Tool (selected

UxVs as parameter)

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 user opens Booking Tool though the

Resource Explorer Tool (selected UxVs as

parameter)

Navigation to

Booking Page

Not Tested Involved components not

implemented

2 Booking Tool displays a calendar view

with the dates where the UxVs are already

reserved

The reserved dates

should completely

reflect all

reservations.

 Not Tested Involved components not

implemented

48

Table 29: Verification test of the Booking on free date

Test ID: BT02 Conducted by: Date: Test Category: Verification

Tests (front end tier)

Hardware Configuration -

Software Configuration -

Test Name: Booking on free date

Preconditions connection to the Booking Service ok

 user opened Booking Tool though the Resource Explorer Tool (selected

UxVs as parameter)

 The selected resource should not be booked (for the given interval)

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 User selects “New booking“ from the UI Booking Tool shows

booking form

Not Tested Involved components not

implemented

2 User enters data (name, time, comments)

and a date where no reservation exist and

submits the form

A Booking Request is

initiated to the

Booking Service

 Not Tested Involved components not

implemented

3 Booking service process the request 1. a checks for

conflicts is

performed

2. The new booking

should be

persistently

saved in the DB

Not Tested Involved components not

implemented

4 Booking tool refresh The resource is

displayed with a status

BOOKED

 Not Tested Involved components not

implemented

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

49

Table 30: Verification test of the Booking on reserved date

Test ID: BT03 Conducted by: Date: Test Category: Verification

Tests (front end tier)

Hardware Configuration -

Software Configuration -

Test Name: Booking on reserved date

Preconditions connection to the Booking Service ok

 user opened Booking Tool though the Resource Explorer Tool (selected

UxVs as parameter)

 The selected resource should already be booked

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 User selects “New booking“ from the UI Booking Tool shows

booking form

Not Tested Involved components not

implemented

2 User enters data (name, time, comments)

and a date where already reservations exist

and submits the form

A Booking Request is

initiated to the

Booking Service

 Not Tested Involved components not

implemented

3 Booking service process the request 1. a checks for

conflicts is

performed

2. No data is saved

in the DB

3. An appropriate

response

message is

returned that

there are already

reservations

 Not Tested Involved components not

implemented

4 Booking tool refresh No information exists

for the resource in the

Booking Tool

 Not Tested Involved components not

implemented

50

2.5.1.6 Data Analysis Tool, engine and results DB

Table 31: Verification test of the ability of the Analysis Engine to query message bus streams & schemas
from the schema registry

Test ID: PT-DAA-E-001 Conducted by: HESSO Date: Feb 2016 Test Category: Verification

Tests (front end tier)

Hardware Configuration Spark Master [8 core / 16 gb ram]

 Spark Slave [8 core / 16gb ram]

 Spark Slave [8 core / 16gb ram]

 3 node Zookeer setup [collocated on spark]

 1x Name node | 1 x Data node

Software Configuration Spark 1.6

 Graphite 0.9

 Confluent 2.01

Test Name: Analysis Engine will be able to query message bus streams & schemas from the

schema registry

Preconditions Working message bus

 Working schema registry

 Working Data Analysis Tool

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 User deploys job (currently via CLI, but in

the future via web UI)

DAE checks if job is a

pre-existing jar, else

compiles a new one

Success

2 DAE verifies schema from registry and

starts a spark job that acquires data from

the message bus

The job is

successfully build and

uploaded to the job

server

Success

Table 32: Verification test of the ability of the Analysis Engine to receive messages from the Analysis
Tool

Test ID: PT-DAA-E-002 Conducted by: HESSO Date: Feb 2016 Test Category: Verification

Tests (front end tier)

Hardware Configuration Spark Master [8 core / 16 gb ram]

 Spark Slave [8 core / 16gb ram]

 Spark Slave [8 core / 16gb ram]

 3 node Zookeer setup [collocated on spark]

 1x Name node | 1 x Data node

Software Configuration Spark 1.6

 Graphite 0.9

 Confluent 2.01

Test Name: Analysis Engine will be able to receive messages from the Analysis Tool

Preconditions Working message bus

 Working schema registry

 Working Data Analysis Tool

Related Requirements PT-DAE-001

Tools Used

Step Action Expected Result Status Remarks

1 User builds a job on the Data Analysis

Tool

Job is successfully

checked for errors

Not tested Data Analysis tool job

selection process not

implemented

2 Data Analysis Engine receives job via The job is Not tested Data pipeline between the

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

51

message bus and builds a job successfully compiled

(or an error returned)

UI and the DAE is currently

in construction

3 Data Analysis Engine builds job and sends

data to Spark

The job is converted

to a JAR and uploaded

via REST to the Spark

job server

Success

Table 33: Verification test of the ability of the Analysis Engine to write data to the results database

Test ID: PT-DAA-E-003 Conducted by: HESSO Date: Feb 2016 Test Category: Verification

Tests (front end tier)

Hardware Configuration Spark Master [8 core / 16 gb ram]

 Spark Slave [8 core / 16gb ram]

 Spark Slave [8 core / 16gb ram]

 3 node Zookeer setup [collocated on spark]

 1x Name node | 1 x Data node

Software Configuration Spark 1.6

 Graphite 0.9

 Confluent 2.01

Test Name: Analysis Engine will be able to write data to the results database

Preconditions Working message bus

 Working schema registry

 Working Data Analysis Engine

 Working Graphite Instance

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 User builds a job and the jar is uploaded to

the spark job server

Job is uploaded

successfully and the

job server registers the

job in spark

Success

2 Spark Engine sends results to the Graphite

instance as it processes the data

Graphite displays a

runtime stream of

processed data

Success

Table 34: Verification test of the provision of an interface to the Analysis Engine by the Analysis Tool

Test ID: PT-DAA-T-001 Conducted by: HESSO Date: Feb 2016 Test Category: Verification

Tests (front end tier)

Hardware Configuration Spark Master [8 core / 16 gb ram]

 Spark Slave [8 core / 16gb ram]

 Spark Slave [8 core / 16gb ram]

 3 node Zokeer setup [collocated on spark]

 1x Name node | 1 x Data node

Software Configuration Spark 1.6

 Graphite 0.9

 Confluent 2.01

Test Name: Analysis Tool will provide an interface to the Analysis Engine (DAE)

Preconditions Working message bus

 Working schema registry

 Working Data Analysis Tool

Related Requirements PT-DAA-T-002

Tools Used

52

Step Action Expected Result Status Remarks

1 User logs in to the web portal Login successful Success

2 DAT queries available schemas from

Schema Registry

All schemas are

returned successfully

Success

3 DAT allows user to select the data they

want to work with as well as the machine

learning algorithm and hyper-parameters

Job is sent via

message bus to the

DAE

Not tested DAT UI is still under

development

Table 35: Verification test of the ability of the Analysis Tool to query available data schemas

Test ID: PT-DAA-T-002 Conducted by: HESSO Date: Feb 2016 Test Category: Verification

Tests (front end tier)

Hardware Configuration Spark Master [8 core / 16 gb ram]

 Spark Slave [8 core / 16gb ram]

 Spark Slave [8 core / 16gb ram]

 3 node Zookeer setup [collocated on spark]

 1x Name node | 1 x Data node

Software Configuration Spark 1.6

 Graphite 0.9

 Confluent 2.01

Test Name: Analysis Tool will be able to query available data schemas

Preconditions Working message bus

 Working schema registry

 Working Data Analysis Tool

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 User logs in to the web portal Login successful Success

2 DAT queries available schemas from

Schema Registry

All schemas are

returned successfully

Success

Table 36: Verification test of the ability of the Analysis Tool to read results from the results database

Test ID: PT-DAA-T-003 Conducted by: HESSO Date: Feb 2016 Test Category: Verification

Tests (front end tier)

Hardware Configuration Spark Master [8 core / 16 gb ram]

 Spark Slave [8 core / 16gb ram]

 Spark Slave [8 core / 16gb ram]

 3 node Zzookeer setup [collocated on spark]

 1x Name node | 1 x Data node

Software Configuration Spark 1.6

 Graphite 0.9

 Confluent 2.01

Test Name: Analysis Tool will be able to read results from the results database

Preconditions Working message bus

 Working schema registry

 Working Data Analysis Tool

 Working results database [graphite]

Related Requirements PT-DAA-T-001

Tools Used

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

53

Step Action Expected Result Status Remarks

1 User logs in to the web portal Login successful Success

2 User builds job Job successfully built

(or error) and sent to

DAE

Not tested Message transfer pipeline

from DAT to DAE is not yet

implemented

3 Results are shown in results tab Job results are shown

as they are processed

via graphite UI

Success

2.5.1.7 Experiment authoring tool

Table 37: Verification test of the in-Textual Editor Experiments definition

Test ID: EAT01 Conducted by: UoA Date: Feb 2016 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration Xtext Server (pre-defined configuration)

 ACE Editor (pre-defined configuration)

Test Name: Define Experiments in the Textual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used Browser

Step Action Expected Result Status Remarks

1 Access to the Textual Editor through

the RAWFIE Web Portal

Redirection to the Textual

Editor interface

Success

2 Write an experiment Experiment is presented in

the editor

Success

3 Utilize code completion, content assist

and compilation

The editor responds with

specific drop down lists,

messages, etc.

Success

4 Define erroneous commands in the

experiment workflow

The editor responds with

error messages and

indication for correcting the

error

Success

5 Save the experiment The experiment is stored in

the database and specific

files are produced to be

adopted by the remaining

RAWFIE components

Success

54

Table 38: Verification test of the Textual Editor Experiments Update

Test ID: EAT02 Conducted by: UoA Date: Feb 2016 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration Xtext Server (pre-defined configuration)

 ACE Editor (pre-defined configuration)

Test Name: Update Experiments in the Textual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used Browser

Step Action Expected Result Status Remarks

1 Access to the Textual Editor through

the RAWFIE Web Portal

Redirection to the Textual

Editor interface

Success

2 Open an already defined experiment Experiment is presented in

the editor

Not

Tested

3 Makes changes in the experiment

workflow

The experiment is updated Success It was tested by inserting

manually an experiment in

the editor.

4 Save the experiment The experiment is stored in

the database and specific

files are produced to be

adopted by the remaining

RAWFIE components

Success

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

55

Table 39: Verification test of the in-Visual Editor Experiments Define

Test ID: EAT03 Conducted by: UoA Date: Feb 2016 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration Xtext Server (pre-defined configuration)

 ACE Editor (pre-defined configuration)

Test Name: Define Experiments in the Visual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used Browser

Step Action Expected Result Status Remarks

1 Access to the Visual Editor through the

RAWFIE Web Portal

Redirection to the

Visual Editor interface

Success

2 Access the available toolbar Specific windows are

presented

Partial

success

The visual editor is not

completely implemented

3 Create an experiment by utilizing the

available tools

The experimenter can

defined waypoints and

experiment

information by

clicking and designing

in the visual editor

Not tested

4 Define erroneous commands The authoring tool

responds with error

messages and

indication for

correcting the error

Not tested

5 Save the experiment The experiment is

stored in the database

and specific files are

produced to be

adopted by the

remaining RAWFIE

components

Not tested

56

Table 40: Verification test of the in-Visual Editor Experiments Update

Test ID: EAT04 Conducted by: UoA Date: Feb 2016 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration Xtext Server (pre-defined configuration)

 ACE Editor (pre-defined configuration)

Test Name: Update Experiments in the Visual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used Browser

Step Action Expected Result Status Remarks

1 Access to the Visual Editor through the

RAWFIE Web Portal

Redirection to the

Visual Editor interface

Success

2 Open an already defined experiment Experiment is

presented in the editor

Not tested

3 Makes changes in the experiment

workflow

The experiment is

updated

Not tested

4 Save the experiment The experiment is

stored in the database

and specific files are

produced to be

adopted by the

remaining RAWFIE

components

Not tested

Table 41: Verification test of the Editor switching

Test ID: EAT05 Conducted by: UoA Date: Feb 2016 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration Xtext Server (pre-defined configuration)

 ACE Editor (pre-defined configuration)

Test Name: Switch between the Editors

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used Browser

Step Action Expected Result Status Remarks

1 Access to the editors through the RAWFIE

Web Portal

Redirection to the

editors interface

Success

2 Create an experiment Experiment is

presented in the

editors

Partial

success

 The visual editor is not fully

functioning

3 Switch to the alternative editor and make

changes

The experiment is

updated

Not tested

4 Save the experiment The experiment is

stored in the database

and specific files are

produced to be

Not tested

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

57

adopted by the

remaining RAWFIE

components

Table 42: Verification test of the experiment Launchings

Test ID: EAT06 Conducted by: UoA Date: Feb 2016 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration Xtext Server (pre-defined configuration)

 ACE Editor (pre-defined configuration)

Test Name: Launch experiments

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used Browser

Step Action Expected Result Status Remarks

1 Access to the authoring tool through the

RAWFIE Web Portal

Redirection to the

editors interface

Success

2 Select an experiment A drop down list of

the available

experiments is

appeared and the

experimenter has the

opportunity to select

one

Success

3 Start the experiment execution The launching service

is informed with the

experiment ID and the

execution starts

Success

58

2.5.1.8 EDL Compiler and Validator

Table 43: Verification test of the Experiments compilation

Test ID: ECV01 Conducted by: UoA Date: Feb 2016 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration Xtext Server (pre-defined configuration)

 ACE Editor (pre-defined configuration)

Test Name: Compile Experiments

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-CPV-001, PT-CPV-002, PT-CPV-003, PT-CPV-004, PT-EXV-S-001, PT-

EXV-S-002, PT-EXV-S-003

Tools Used Browser

Step Action Expected Result Status Remarks

1 Access to the authoring tool through the

RAWFIE Web Portal

Redirection to the

editors interface

Success

2 Write a simple experiment The experiment

workflow is presented

in the available

editors

Partial

Success

 The visual editor is not fully

functioning

3 Compile the experiment The necessary files

required by the

remaining RAWFIE

components are

produced

Success

Table 44: Verification test of the Experiments validation

Test ID: ECV02 Conducted by: UoA Date: Feb 2016 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration Xtext Server (pre-defined configuration)

 ACE Editor (pre-defined configuration)

Test Name: Validate Experiments

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-CPV-001, PT-CPV-002, PT-CPV-003, PT-CPV-004, PT-EXV-S-001, PT-

EXV-S-002, PT-EXV-S-003

Tools Used Browser

Step Action Expected Result Status Remarks

1 Access to the authoring tool through the

RAWFIE Web Portal

Redirection to the

editors interface

Success

2 Write a simple experiment The experiment

workflow is presented

in the available editors

Partial

Success

 The visual editor is not fully

functioning

3 Validate the experiment Validation is

performed and error /

warning messages are

presented in the

editors

Success

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

59

2.5.1.9 UxV Navigation Tool

Table 45: Verification test of the UxV navigation tool access and produced instructions validation

Test ID: UxVNT01 Conducted by: TBD Date: Feb 2016 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration

Test Name: Validate Experiments

Preconditions Requires Web Portal to be functioning and accessible

Related Requirements

Tools Used Browser

Step Action Expected Result Status Remarks

1 Access the UxV Navigation Tool through

the portal

Ability to navigate the

swarm

Not tested Access the UxV navigation

tool and validate the

produced instructions

2 Validate the produced instructions

Validate the schema of the JSON output

file

Validate the data format of the JSON

output file

Validate the size of the JSON output file

All validation

successful. The output

data should be

accessible and

compatible with the

required format

Not tested This component will provide

to the user the ability to

remotely navigate a squad of

UxVs. Through a user

friendly interface, the

experimenter will specify the

required details of the

experiment, providing

information regarding the

number of the vehicles, the

number of the units etc.

2.5.1.10 Visualization Tool

Table 46: Verification test of the User request handling

Test ID: VIS01 Conducted by: Epsilon Date: Feb 2016 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: User request handling
Preconditions Requires visualization tool to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

Related Requirements

Tools Used Browser

Step Action Expected Result Status Remarks

1 User sends a predefined websocket request

via the visualization tool

The visualization tool

forwards it to the

visualization engine

Success

2 Handle the response from the visualization

engine

The response is

visualized on the user

screen

Success

60

Table 47: Verification test of the Geospatial data handling

Test ID: VIS02 Conducted by: Epsilon Date: Feb 2016 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Geospatial data handling
Preconditions Requires visualization tool to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

 Requires message bus to be functioning & accessible.

Related Requirements

Tools Used Browser

Step Action Expected Result Status Remarks

1 Acquire predefined geospatial data (WMS,

WFS) via the message bus
Data is properly

received in the correct

format at the VE

Success

2 Modify the data to be suited for the VT and

send it via websocket to VT

VT renders the data

and plots it on the

screen

Success

Table 48: Verification test of the Geospatial data modification

Test ID: VIS03 Conducted by: Epsilon Date: Feb 2016 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Geospatial data modification

Preconditions Requires visualization tool to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

 Requires message bus to be functioning & accessible.

Related Requirements

Tools Used Browser

Step Action Expected Result Status Remarks

1 Acquire predefined geospatial data (WMS,

WFS) via the message bus
Data is properly

received in the correct

format at the VE

Success

2 Add a layer of information data and send it

to the VT

VT plots the data and

the layer properly

Not tested This feature is not available

yet

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

61

Table 49: Verification test of the Experiment Controller communication

Test ID: VIS04 Conducted by: Epsilon Date: Feb 2016 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Experiment Controller communication
Preconditions Requires experiment controller to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 Receive a message that the experiment has

started from the Experiment Controller

The visualization tool

starts the experiment

Not tested The concept changed. Now

the VT requests this

information and cannot

interact with such message

from the Experiment

Controller

2 Receive a message that the experiment has

stopped from the Experiment Controller

The VT stops the

experiment

Not tested The concept changed. Now

the VT requests this

information and cannot

interact with such message

from the Experiment

Controller

Table 50: Verification test of the Visualization Tool Interaction

Test ID: VIS05 Conducted by: Epsilon Date: Feb 2016 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Visualization Tool Interaction
Preconditions Requires visualization tool to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

Related Requirements

Tools Used Browser

Step Action Expected Result Status Remarks

1 Enable/Disable different features of the

visualization tool (e.g. show/hide speed

web widget)

The user sees the

updated plot

(show/hide speed web

widget)

Success

62

Table 51: Verification test of the Camera interaction

Test ID: VIS06 Conducted by: Epsilon Date: Feb 2016 Test Category: Verification

Tests (front end)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Camera interaction

Preconditions Requires visualization tool to be functioning & accessible.

 Requires visualization engine to be functioning & accessible.

 Requires Experiment controller to be functioning & accessible.

Related Requirements

Tools Used Browser

Step Action Expected Result Status Remarks

1 Retrieve with the visualization engine

quasi real time data from one UxV,

processes it and send it to the visualization

tool

The VT plots the data

properly

Success

2 Change the camera view for the scenario Data camera is

adjusted

Success

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

63

2.5.2 Communication and storage components

2.5.2.1 Testbeds directory service

Table 52: Verification test of the resource Retrieval from testbed facility

Test ID: TD01 Conducted by: IES Date: Feb 2016 Test Category: Verification

Tests (Middle Tier)

Hardware Configuration

Software Configuration Testbed Directory Service deployed in a RAWFIE server (with the Apache

Tomcat Servlet Container)

Access to the PostgreSQL server granted

Test Name: Retrieve resources from testbed facility

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service

When preparing the test, the test executor should know the ID of the testbed he is

looking for (in case of the getResources() API), and about the resource he is

looking for (in case of the searchResourceAPI())

Related Requirements

Tools Used SOAP UI Client

Step Action Expected Result Status Remarks

1.a The input JSON request is prepared,

specifying the testbed identifier
The Testbed Directory

Service gives back a

JSON response

message, containing

details about all

resources belonging to

the specified testbed

Success If no testbed or resources are

found for any particular reason,

or an error occurs, the calling

component should be notified

and should react accordingly.

Specific error and notification

messages are going to be

compiled in the next iteration so

that the calling component (e.g.

the Resource Explorer Tool)

will, in turn, provide them to the

end users in a graphical and user

friendly way

2.a The getResources() REST API is called

from the SOAP UI Client Tool, providing

the prepared JSON request in input

1.b The input JSON request is prepared,

specifying the testbed identifier and the

identifier of the resource

The Testbed Directory

Service gives back a

JSON response

message, containing

detailed information

about the specific

resource belonging to

the specified testbed

Success If no testbed or resource is found

for any particular reason, or an

error occur, the calling

component should be notified

and should react accordingly.

Specific error and notification

messages are going to be

compiled in the next iteration so

that the calling component (e.g.

the Resource Explorer Tool)

will, in turn, provide them to the

end users in a graphical and user

friendly way

2.b The searchResource() REST API is called

from the SOAP UI Client Tool, providing

the prepared JSON request in input

64

Table 53: Verification test of the Addition of a new testbed facility to the RAWFIE federation

Test ID: TD02 Conducted by: IES Date: Feb 2016 Test Category: Verification

Tests (Middle Tier)

Hardware Configuration

Software Configuration Testbed Directory Service deployed in a RAWFIE server (with the Apache

Tomcat Servlet Container)

Access to the PostgreSQL server granted

Test Name: Add new testbed facility to the RAWFIE federation

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service

When preparing the test, the test executor should know as much information as

possible about the testbed to be inserted, and according to the information

required by the platform

Related Requirements

Tools Used SOAP UI Client

Step Action Expected Result Status Remarks

1 The input JSON request is prepared, with

the information about the new testbed to be

added

No error occurred.

And the information

about the new testbed

is from now on

available in the

Master Data

Repository, as it can

be verified by using

the getTestbeds() or

searchTestbed() REST

API (see TD04 in the

following)

Success If it is not possible to insert the

new testbed for any particular

reason (e.g. mal formatted JSON

request), the calling component

should be notified about the

error occurred, and should react

accordingly.

Specific error and notification

messages are going to be

compiled in the next iteration so

that the calling component (e.g.

the Resource Explorer Tool)

will, in turn, provide them to the

end users in a graphical and user

friendly way

2 The createTestbed() REST API is called

from the SOAP UI Client Tool, specifying

the testbed information in the input JSON

request

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

65

Table 54: Verification test of the Registration of a new UxV node into a testbed facility

Test ID: TD03 Conducted by: IES Date: Feb 2016 Test Category: Verification

Tests (Middle Tier)

Hardware Configuration

Software Configuration Testbed Directory Service deployed in a RAWFIE server (with the Apache

Tomcat Servlet Container)

Access to the PostgreSQL server granted

Test Name: Register new UxV node into a testbed facility

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service

When preparing the test, the test executor should know as much information as

possible about the new resource to be added, the related testbed, and according to

the information required by the platform

Related Requirements

Tools Used SOAP UI Client

Step Action Expected Result Status Remarks

1 The input JSON request is prepared, with

the information about the new resource to

be added (and the testbed facility it belongs

to)

No error occurred.

And the information

about the new

resource (UxV node)

is from now on

available in the

Master Data

Repository, as it can

be verified by using

the getResources() or

searchResource()

REST API (see TD01

above)

Success If it is not possible to insert

the new resource (UxV

node) for any particular

reason (e.g. malformatted

JSON request), the calling

component should be

notified about the error

occurred, and should react

accordingly.

Specific error and

notification messages are

going to be compiled in the

next iteration so that the

calling component (e.g. the

Resource Explorer Tool)

will, in turn, provide them to

the end users in a graphical

and user friendly way

2 The createResource() REST API is called

from the SOAP UI Client Tool, specifying

the needed information in the provided

input JSON request

66

Table 55: Verification test of the Retrieval of testbed information and belonging resources

Test ID: TD04 Conducted by: IES Date: Feb 2016 Test Category: Verification

Tests (Middle Tier)

Hardware Configuration

Software Configuration Testbed Directory Service deployed in a RAWFIE server (with the Apache

Tomcat Servlet Container)

Access to the PostgreSQL server granted

Test Name: Retrieve testbed information and belonging resources

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service

When preparing the test, the test executor should know the ID of the testbed he is

looking for, in case only information of resources form a specific testbed is

required

Related Requirements

Tools Used SOAP UI Client

Step Action Expected Result Status Remarks

1.a The getTestbeds() REST API is called

from the SOAP UI Client Tool, without

any specific testbed information (null

JSON input request)

The Testbed Directory

Service gives back a

JSON response

message, containing

details about all

registered testbeds

and all resources

belonging to each of

them

Success If no testbeds are found for any

particular reason, or an error

occurs, the calling component

should be notified and should

react accordingly.

Specific error and notification

messages are going to be

compiled in the next iteration so

that the calling component (e.g.

the Resource Explorer Tool)

will, in turn, provide them to the

end users in a graphical and user

friendly way

1.b The input JSON request is prepared, with

the information about the identifier of the

testbed we are requesting information

The Testbed Directory

Service gives back a

JSON response

message, containing

details about the

testbed and all

registered resources

belonging to it

Success If no testbed is found for any

particular reason, or an error

occurs, the calling component

should be notified and should

react accordingly.

Specific error and notification

messages are going to be

compiled in the next iteration so

that the calling component (e.g.

the Resource Explorer Tool)

will, in turn, provide them to the

end users in a graphical and user

friendly way

2.b The searchTestbed() REST API is called

from the SOAP UI Client Tool, specifying

the needed information in the provided

input JSON request

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

67

2.5.2.2 Users and Rights Service

Table 56: Verification test of the Visualisation of experiment status

Test ID: URS01 Conducted by:

Fraunhofer

Date: Feb 2016 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Visualisation of experiment status

Preconditions Valid user name and password known

Related Requirements

Tools Used SOAPUI REST client

Step Action Expected Result Status Remarks

1 invalid user name and password sent to the

Users & Rights Service

Users & Rights

Service return failure

Success

2 valid user name and password sent to the

Users & Rights Service

Users & Rights

Service return failure

Success

Table 57: Verification test of the user rights checks

Test ID: URS02 Conducted by:

Fraunhofer

Date: Feb 2016 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Check user rights

Preconditions Valid user rights known

Related Requirements

Tools Used SOAPUI REST client

Step Action Expected Result Status Remarks

1 user ID and available required rights sent

to the Users & Rights Service

Users & Rights

Service return true

Success

2 user ID and not available required rights

sent to the Users & Rights Service

Users & Rights

Service return false

Success

68

2.5.2.3 Launching Service

Table 58: Verification test of the short term launching

Test ID: LS01 Conducted by: HAI Date: Feb 2016 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Short term launching

Preconditions Requires the Web portal to be accessible.

 Requires the Launching tool to be accessible.

 Requires the Message Bus and the experiment controller to be accessible.

 The master data repository should contain reservations for the user.

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 User selects an already defined

experiment

Experiment info is loaded to

UI

Success

2 User initiates manual start via the web

UI for the select experiment

manualStart is called on the

Launching Service, checking

if no executionId already

exists for the experiment

Success

2-1 If no execution ID exists:

1. Launching service

generates an

ExperimentStartRequest

to the Message Bus.

2. An executionId is

generated that uniquely

identifies the running

experiment

3. ExperimentStartRequest

is consumed by the

ExperimentController

 Success ExperimentController is

not implemented therefore

the message is consumed

directly by the

ResourceController in the

trestbed tier

2-2 If an execution ID already

exists:

1. Launching service

considers the

experiment already

running and returns an

error message

2. No further action

Success

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

69

Table 59: Verification test of long term launching

Test ID: LS02 Conducted by: HAI Date: - Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Long term launching

Preconditions Requires the Web portal to be accessible.

 Requires the Launching tool to be accessible.

 Requires the Message Bus and the experiment controller to be accessible.

 The master data repository should contain reservations for the user.

 The master data repository should contain experiments scheduled for a feature

time

 The platform launching scheduler must be running

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 Initiate the checking process of the

booking repository (via Platform

Scheduler trigger)

An experiment is identified

in the DB

Not Tested launching scheduler does

not yet exists

2 sheduledStart is called by

the Launching Service

Not Tested Method not yet

implemented

2-1 If no execution ID exists:

4. Launching service

generates an

ExperimentStartRequest

to the Message Bus.

5. An executionId is

generated that uniquely

identifies the new

experiment

6. ExperimentStartRequest

is consumed by the

ExperimentController

 Not

Tested

2-2 If an execution ID already

exists:

3. Launching service

considers the

experiment already

running and returns an

error message

4. No further action

Not Tested

70

2.5.3 Testbed control, monitoring and analysis components

2.5.3.1 Experiment Controller

Table 60: Verification test of Experiment Controller connection

Test ID: EC01 Conducted by: CERTH Date: - Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Connection Test

Preconditions Requires web portal to be functioning and accessible.

 Register an experiment (Testbed manager)

 Send Network Requirements (Testbed manager)

 Send basic instructions to the Resource Controller

 Transmit simulated or real results back to the Experiment Monitoring Tool

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 Register an experiment (Testbed

manager)

Successful registration Not Tested

2 Send Network Requirements (Testbed

manager)

Network requirements met,

acknowledged by the

Testbed Controller

Not Tested

3 Send basic instructions to the Resource

Controller

Instructions acknowledged

by the Resource Manager

(resources are available)

 Not

Tested

The EC transmits to the

resource controller the

instructions he received

from the Web Portal.

4 Transmit simulated or real results back

to the Experiment Monitoring Tool

Results successfully received

by the Experiment

Monitoring Tool

Not Tested

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

71

Table 61: Verification test of Experiment Controller workflow

Test ID: EC02 Conducted by: CERTH Date: - Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Execute experiment workflow

Preconditions The experimenter have already created the script for the experiment of interest

 The chosen resource must be completely available and ready to use

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 The experimenter forwards the script to

the Experiment Controller in order to

start or barely execute the next action of

the resource mission

Successful forwarding and

start of execution

Not Tested

2 The instructions are forwarded to the

corresponding testbed facility

Testbed facility received the

instructions correctly

Not Tested

3 The resource receives the new set of

instructions as generated from the script

for overriding the experiment workflow

The resource overrides its

current experiment

according to the new

instructions

 Not

Tested

The execution of the

experiment happens just as

the experimenter defined it

in the EDL script and the

action was successfully

performed.

4 Not Tested

2.5.3.2 Monitoring Manager

Table 62: Verification test of Monitoring Activity

Test ID: MM01 Conducted by: CSEM Date: - Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Check Monitoring Activity

Preconditions Requires the resource controller to be accessible.

 Requires the network controller to be accessible.

 Requires the data tier to be accessible.

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 Not Tested The experiment should

smoothly start and the

appropriate RAWFIE

components should be

initiated.

72

2.5.3.3 Network Controller

Table 63: Verification test of network interface switching due to connectivity problems

Test ID: NC01 Conducted by: CSEM Date: - Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Switch network interface due to connectivity problem

Preconditions Requires the Testbed Manager to be accessible

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 The Network Controller ‘checks’ the

connectivity of the resources through

the Resource Controller.

The Resource Controller

informs the Network

Controller for malfunctions

in the network connectivity

of the resources.

Not Tested

2 The Network Controller receives the

incoming messages from the Resource

Controller.

The appropriate network

interface is selected.

Not Tested The Network Controller

identifies problems in the

connectivity and triggers

the Resource Controller to

force the change of the

network interface.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

73

2.5.3.4 Resource Controller and Navigation Service

Table 64: Verification test of Connection and of Accuracy validation of the given Instructions

Test ID: RC01 Conducted by: CERTH Date: - Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Connection Test and Validation of the Accuracy of the Given Instructions

Preconditions The proxy should be connected to the testbed

 Requires the UxV to be ready to operating (e.g. en route).

 Requires the UxV to be reachable by any communication mean.

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 Receive instructions from the

Experiment Controller

Instructions received Not Tested

2 Validate the Obstacle Avoidance

Mechanism using known simulated

scenarios

Validation Status available Not Tested

3 Validation of the Collision Avoidance

Mechanism using known simulated

scenarios

Validation Status available

4 Send basic instructions to the UxVs

through the Testbed Manager so as to

perform UxV01- UxV05 tests

The UxV follows the

instruction correctly, in

order and timely, according

to the specified parameters.

5 Transmit the results back to the

Experiment Controller

2.5.4 Testbed resources

2.5.4.1 Testbed Manager

Note: TM01, TM02, TM03 are obsolete.

74

Table 65: Verification test of Testbed health status

Test ID: TM04 Conducted by: HAI Date: Feb 2016 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details Testbed site x86 PC

Software Configuration Details Java installed, RAWFIE Testbed Manager installed (Java application), Apache

Kafka in RAWFIE platform accessible

Test Name: Check Testbed health status

Preconditions Requires middle tier to be accessible (System Monitoring Service)

 Initial Testbed Manager configuration:

o CPU usage WARNING > 50%, CRITICAL >90%

o Memory usage WARNING > 50%, CRITICAL >90%

o Disk usage WARNING > 50%, CRITICAL >90%

o Frequency of sending messages 30 sec

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 Testbed Manager started 1. Testbed manager

successfully initialized

2. Testbed Manager checks

periodically CPU load,

memory and disk usage

Success

2 Testbed manager processing (status

assessment)

3. A TestbedHealthStatus

message is created

containing an overall

assessment (OK,

WARNING,

CRITICAL) for the

usage metrics monitored

4. The message is sent to

the Message bus

Success

3 Check System monitoring Service

UI display at Middle Tier

Display of Testbed Manager

status. Initial status OK

Success

4 Artificially increase CPU or

Memory usage

Status message sent to the

message bus (TBC)

Success i.e. by opening or running

additional resource

intensive applications in

the machine where

Testbed Manager is

installed

5 Recheck System monitoring Service

UI display at Middle Tier

Display of Testbed Manager

status. Status changes to

WARNING or CRITICAL

Success

6 Decrease CPU or Memory usage

and recheck System monitoring

Service UI display at Middle Tier

Display of Testbed Manager

status. Status changes back to

OK

Success Close extra running

applications

Note: The following tests are obsolete, although performed, due to implementation changes.

They are mentioned for reference and will be either updated or removed in next iteration.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

75

Table 66: Verification test of status of the experiments

Test ID: TM02 Conducted by: Date: Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details Testbed site x86 PC

Software Configuration Details Java installed, RAWFIE Testbed Manager installed (Java application), Apache

Kafka in RAWFIE platform accessible

Test Name: Checks the status of the experiments

Preconditions Requires middle tier to be accessible

 Requires the experiment controller to be accessible

 Requires Data Tier to be accessible (Obsolete: Data Tier is accessible only

from Middle Tier components)

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 Experiment Controller sends a

request to Testbed Manager

Request message properly

received from Testbed

Manager

Not

Applicable

This step has been omitted

as it has been replaced by

sending the experiment

status periodically from

Testbed Manager without

a previous request

2 Testbed Manager checks locally the

status of the experiments

-

3 Sends a list with the experiments

and their status to Experiment

Controller

The list of experiments is

properly received from

Experiment Controller

Not

Applicable

(replaced by step 4)

4 Sends the experiment status to

Experiment Controller

76

Table 67: Verification test of the Management of the experiments without middle-tier connection

Test ID: TM03 Conducted by: Date: Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details Testbed site x86 PC

Software Configuration Details Java installed, RAWFIE Testbed Manager installed (Java application), Apache

Kafka in RAWFIE platform accessible

Test Name: Manage the experiments without middle-tier connection

Preconditions Testbed loses the connection with the middle tier

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 Testbed Manager checks the status

of the experiments

Testbed Manager properly

receives ExperimentStatus

message

Not tesred

2 Testbed Manager informs Resource

Controller for “emergency” situation

and pause experiments

 Not

Applicable

3 Resource Controller sends a

response

 Not

Applicable

2.5.4.2 UxV Node

The UxV node and related components are interacting with the other Rawfie component

through the Message Bus.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

77

Table 68: Verification test of UxV Return to base

Test ID: UxV01 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Return to base
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related Requirements

Resource controller reachable

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Establish a secure control session

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Send the return to base command

Return to base command

received
Success

4 If the UxV is not autonomous, instruct it

with the necessary waypoint or guidance

information, possibly until the end of the

test

Further optional instructions

for returning home received,

Confirmation of the UxV at

home

Success

5 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial

Success
See remark on step 2

78

Table 69: Verification test of the ability of the UxV to follow a route

Test ID: UxV02 Conducted by: MST Date: Feb 2016 Test Category: Verification Tests (testbed tier)
Hardware

Configuration
rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software

Configuration
OceanScan Proxy 2016.02

Test Name: Follow a route
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related

Requirements
Resource controller reachable

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Resource

controller

computes

mission and

send

waypoint

Robot proceeds to
the specified point,

Success

2 Robot
continuously
sends actual
location

RC receives position
and check if WP
have been reached

Success

3 RC sends
next point

Robot receives and
proceed to next
point

Success

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

79

Table 70: Verification test of Acquire sensor samples

Test ID: UxV03 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Acquire sensor samples
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related Requirements

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Send the acquisition commands Commands received and

executed
Partial

Success
At this point the UxVs are

always acquiring data from

all sensors
4 Store sensor samples and, if possible,

transmit them via the data communication

system

Samples stored and, if possible,

transmitted
Success

5 If opened specifically for the matter of the

test, close the secure control session.
Sensor samples have acquired

correctly and are stored in the

UxV memory or in the

experiment database.

Connection closed

Partial

Success
See remark on step 2

80

Table 71: Verification test of Fidelity to commands

Test ID: UxV04 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Fidelity to commands
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related Requirements

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Send repeatedly pre-defined sets of

commands, covering the full range of

possible UxV actions,

Commands received and

executed
Success

4 Check the conformance of the undertaken

actions and corrections (if necessary) to the

commands,

Undertaken actions in

conformance to the commands
Success

5 Record all fine grained status of the UxV

over the duration of the test, to be able to

reconstruct the behaviour of the UxV,

Status recorded Success

6 If opened specifically for the matter of the

test, close the secure control session.
Sensor samples have acquired

correctly and are stored in the

UxV memory or in the

experiment database.

Connection closed

Partial

Success
See remark on step 2

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

81

2.5.4.3 UxV Network Communication

Table 72: Verification test of Continuous communication

Test ID: UxV06 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Continuous communication
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating.

- Requires the UxV to be reachable by any communication mean.
Related Requirements

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

2 Exchange a predefined set of commands

and data.
Commands and data correctly

exchanged
Success The UxV is “home” (to be

defined, since it may depend

on the type of UxV, the

running experiment, the host

testbed) after a safe return.

“Home” may be an attribute

of the UxV.
3 Close the communication session. Communication closed Success

82

Table 73: Verification test of Secure communication

Test ID: UxV07 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Secure communication
Preconditions - Requires the RAWFIE system to be operational

- Requires the UxV to be ready to operating.

- Requires the UxV to be reachable by any communication mean.
Related Requirements

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Check communication parameters

Communication parameters

and status are correct and

matching

Success

4 Exchange a pre-defined set of commands

and data,
Commands and data correctly

exchanged
Success The end to end

communication between the

UxV and the ground control

is established, secured and

maintained.
5 Close the secure control session. Connection closed Partial

Success
See remark on step 2

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

83

Table 74: Verification test of Real-time communication

Test ID: UxV08 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Real-time communication
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related Requirements

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Send safe commands and measure the

temporal characteristics of the

communication (e.g. response time,

synchronisation of reception across a

swarm of UxV (coordinated group of

UxV), etc.).

Real-time constraints

applicable to the exchanged

commands are met or

mismatches are detected

Success The time of flight of

messages is greater when the

producer registers with the

message bus, sometimes

reaching more than 10

seconds. This latency is

perfectly tolerated by MST

vehicles
4 Close the secure control session. Connection closed Partial

Success
See remark on step 2

84

Table 75: Verification test of Resume communication and data transfer

Test ID: UxV09 Conducted by: Date: Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Resume communication and data transfer

Preconditions Requires the RAWFIE system to be operational

 Requires the mission to be defined and running.

 Requires the UxV to be ready to operating.

 Requires the UxV to be reachable (at least sporadically) by any

communication mean.

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 Establish the communication with the

UxV

Communication established Not Tested

2 Start a transaction. Transaction started Not Tested

3 Interrupt the communication at the low-

level (e.g. disconnect the antenna)

Communication is

interrupted, the transaction

is not complete.

Not Tested The UxV detects the

communication

interruption and the re-

establishment of the

communication link and

resume the interrupted

transaction (may be by

restarting it).

4 Re-establish the communication low

level means

The transaction resumes and

completes

Not Tested

5 Close the communication session. Connection closed Not Tested

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

85

Table 76: Verification test of UxV Device Management

Test ID: UxV10 Conducted by: Date: Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: UxV Device Management

Preconditions Requires the RAWFIE system to be operational

 Requires the mission to be defined and running.

 Requires the UxV to be ready to operating (e.g. en route).

 Requires the UxV to be reachable by any communication mean.

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 Establish the communication with the

UxV

Communication established Not Tested

2 Establish a secure control session (if

not done already)

Secured control session

established

Not Tested

3 Send the return to base command

Command received and

applied

Not Tested

4 If the UxV is not autonomous, instruct

it with the necessary waypoint or

guidance information, possibly until the

end of the test

Further optional instructions

for returning home received,

Confirmation of the UxV at

home

Not Tested

5 Close the secure control session. The UxV is home after a safe

return. Connection closed

Not Tested

86

Table 77: Verification test of the UxV connection

Test ID: UxV11 Conducted by: MST Date: Feb 2016 Test Category:

Verification Tests

(testbed tier)

Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02

Test Name: Connection Test

Preconditions UxV-Node launched

Related Requirement Message bus working

Tools Used OceanScan Proxy 2016.02 Testsuit

Step Action Expected Result Status Remarks

1 Kafka Subscriber is called from another machine Topic is shown with UxV

information being published

Success

2 Kafka Publisher is called with a valid waypoint Robot proceeds to the specified

point

Success

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

87

Table 78: Verification test of Sensor Data Acquisition 1

Test ID: UxV12 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Sensor Data Acquisition 1
Preconditions - UxV is in operation state and the parent UxV node has been launched

- Network Communication is also fully functional
Related Requirements

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Acquire sensor data

Data acquired (every sensor

works as specified)
Success Individual sensor data is

tested
4 Send acquired data Data received Success Provides data gathered by

each sensor placed on the

robot. Data streamed of

every sensor is tested

individually
5 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial

Success
See remark on step 2

88

Table 79: Verification test of Sensor Data Acquisition 2

Test ID: UxV13 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Sensor Data Acquisition 2
Preconditions - UxV is in operation state and the parent UxV node has been launched

- Network Communication is also fully functional
Related Requirements

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 Instruct the robot to move to a know

location
Robot at the specific location Success Robot is moved to a precisely

located point and a

comparison is done later
4 Acquire current location data

Location data acquired

(location sensor works as

specified)

Success Localization of the robot is

tested.

5 Send acquired location data Data received Success Provides data about the

location of the robot.

Location is compared to

known location.
6 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial

Success
See remark on step 2

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

89

Table 80: Verification test of Data Storage

Test ID: UxV14 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Data Storage
Preconditions - UxV is in operation state and the parent UxV node has been launched.

- Sensor node is functional
Related Requirements

Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Partial

Success
At this point only network

level security is used (i.e.,

WPA2)
3 A request for storing certain data is done Command received and data is

stored locally
Partial

Success
At this point no such

command exists and the

UxVs will store all data
4 After a mission given, data storage in the

system is checked.

Data was correctly stored and

kept.
Success The data is stored and

identified in the robot

system
5 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial

Success
See remark on step 2

90

Table 81: Verification test of Waypoints Processed

Test ID: UxV15 Conducted by: MST Date: Feb 2016 Test Category: Verification

Tests (Testbed tier)
Hardware Configuration rawfie.mst.auv-1, rawfie.mst.auv-2, rawfie.mst.asv-1

Software Configuration OceanScan Proxy 2016.02
Test Name: Waypoints Processed
Preconditions - UxV is in operation state and the UxV parent node has been launched.

- Sensor node is functional, network communication is functional
Related Requirements

Tools Used Neptus Command & Control

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

2 Establish a secure control session (if not

done already)

Secured control session

established
Not Tested At this point only network

level security is used (i.e.,

WPA2)
3 Waypoints are sent to the UxV UxV receives and processes the

waypoints
Success Semi-autonomous mission is

tested. The UxV has to

process a set of waypoints

and move to each waypoint

in sequence. The UxV

processes the data.
4 The calculated route is applied to the UxV

The actual trajectory matches

the route calculated by the

navigation.

Partial

Success
The UxVs used in this test are

not equipped with collision

avoidance sensors.
5 Iterate step 4 until assessment is complete UxV stops, informs and

recalculate its route to next

waypoint if an unexpected

obstacle is found.

6 Close the secure control session. The UxV is home after a safe

return. Connection closed
Partial

Success
See remark on step 2

3 Roadmap

The results obtained during the experimentations and the specific tests are analysed to

identify and characterise the improvements and fixes to be brought to the prototype

implementation (second iteration). Furthermore, possible customizations are also briefly

mentioned.

3.1 Deviations

No major deviation from the initial plan has been required, implemented or identified from

the integration standpoint. However, the Testbed Proxy component has been removed from

the RAWFIE architecture, which slightly impacted a number of tests.

Some components and tests have not yet been performed, which deviates from the D4.3 test

planning. Additionally, changes have been brought in the verification template used in D4.3

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

91

to report the observations and results in the same place; a template for the specific test of the

interface has been created and used for the corresponding test report)

3.2 Suggested modifications and improvements

3.2.1 Modifications and improvements to the RAWFIE system

Eventually, a limited number of major modifications have been collected at this point,

although the design and the initial implementation steps led to numerous adjustments, design

fixes, etc. This was particularly the case for the data model, the usage of the message bus, the

definition of the AVRO schemas and the geographical coordinate system(s). After this

stabilisation phase, the remaining modifications are listed below:

- Web Portal

o Better integration of the EDL editor and the Visualisation Tool (currently done

via iframe)

- System Monitoring Tool

o Better structured view: Categories and filters functions instead of a plain table

Since not all components have been implemented or tested, further modifications are to be

expected in the next development iterations.

The improvements of verified components that have been identified and to be implemented

during the next cycles are:

- Web Portal

o Implement User management GUI

o Language is changed, but only a few texts are translated (add translations)

- Launching Service

o Improve the feedback returned to the callers of the Launching Service API by

adding an appropriate text field in the returned response (currently in case of

error there is no indication on what exactly went wrong)

- Resource Explorer Tool

o should implement a search functionality

o More filtering criteria for the selection of resources/UxVs may be useful in a

subsequent iteration

o More filtering criteria for the selection of testbeds may be useful in a

subsequent iteration

- EDL Visual Editor

o Complete and fix the visual editor features

o

- System Monitoring Service

o Also monitor UxV status

- System Monitoring Tool

o Servers and Testbeds displayed, but UxVs did not send status information (to

be implemented)

- Master Data Repository

92

o Creation of additional history tables for certain tables of the RAWFIE data

model in order to have better auditing of all actions related mainly to

experiment execution and resource reservation (i.e. currently only the last

status of an executing experiment is available).

- Visualisation engine

o Get the location and sensor data from the UxVs. Implement the support for all

sensor data.

- Testbed manager

o Experiment Controller does not yet exists - message sent from Launching

Service.

- UxV node

o Visualization indoors needs revision to offer a descriptive environment,

o Only temperature measurement was tested. Add more sensor interfaces.

o Threshold to accept local position as the waypoint needs to be carefully tuned

(in particular when following a route).

o To modify the architecture of the Publishers regarding ROS-Rawfie adaptor to make

each publisher match an specified ros standard message, in case future partners can

make use of them

4 Suggested Customizations

This paragraph aims at listing the expected customization mechanisms foreseen for

supporting the following objectives:

- Adapt to a specific application or usage;

- Adapt to specific regulations;

- Adapt to specific environment;

- Etc.

Customization is not “improvement or refinements”, but the adaptation or personalization of

the system as it is to a specific purpose, usage or environment. The customization is done by

RAWFIE stakeholders and not by the project consortium. However, the project consortium

defines and implement the customisation mechanisms. Customisation does not directly

address issues, problems, failures, functional or non-functional gaps, etc. but customisation

may allow for selecting different options helping in solving them.

To achieve such objectives, it is possible to do:

- Customisation through parametrization

- Customisation through component customization (affects only internal interfaces of

components or component implementation)

- Customisation through component recombination (different components are used

instead of the initial ones, leading to potential interface redefinitions)

Note that customisation is a static process, which does not change once performed. Further

customisation is required to change, which is not supposed to be performed in real-time.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

93

4.1 Component customizations

Many customisations are expected to occur during the project, in particular when adapting the

RAWFIE system to the needs and aims of applications developed in the projects selected in

the context of the Open calls.

The customisation of components by any authorised stakeholder could be made possible by

defining a generic interface exposed by any RAWFIE component for the support of plug-ins

(registration, authentication, activation, etc.) that would have access to private component-

specific interfaces. Such interfaces would be publicly described (structure, parameters,

semantics) but would be only accessible by duly registered plug-ins. This proposal is

currently under study and it has not been implemented yet.

4.2 General Platform & testbed Customizations

The above mechanisms allow for the customisation of most aspect of the RAWFIE platform.

Other needs requiring the exploration of further customisation mechanisms have not been yet

identified.

4.3 UxVs Customizations

UxVs are probably the most varying element of the applications targeted by RAWFIE. They

can be of three different natures at least (ground, aerial, water surface and more), for which

the characteristics can be very different from one model to another. Since the general

architecture of UxV varies from one manufacturer or UxV family, it is only possible to take

into account its external behaviour and physical characteristics, in particular in the form of

requirements. Most of these requirements have been identified and described in WP3

deliverables and D4.4. The verification of the UxV component has been done on the basis of

these requirements, which define the typical behaviour and characteristics of a RAWFIE

UxV.

As a matter of fact, the customisation of the RAWFIE UxVs has been done by the two UxV

manufacturers that are members of the RAWFIE consortium (for ground and water surface

vehicles), exclusively for allowing the support for the integration with the RAWFIE

ecosystem. As this point, no customisation is provided by RAWFIE to easily customise the

UxV component to application specific needs. For the time being, the objective is to list the

detected improvements, fixes and new features to be brought to the already integrated system.

Further customisation can be done in two ways: by using UxV-dedicated values for some of

the component parameters or by “plugging” additional components to the RAWFIE

components that are linked to the UxV (i.e. components in direct connection with the UxV

through the “UxV adaptor” and components that consume or produce UxV understandable

data through the message bus, e.g. in other RAWFIE tiers).

The proposed customisation approach will be experimented by UxV manufacturers, for

example during the projects selected in the context of the Open Calls.

94

5 Conclusion

Generally, the integration and the resulting RAWFIE prototype followed the plan, giving

satisfactory results, in line with the expectations. Some components had to be modified and

corrections and required features have been identified. In addition, the integration process is

based on an appropriate test and verification methodology and framework, allowing the

teams for focusing on the technical work.

The choices made during the proposal phase and the early stages of the project proved

relevant and effective. The integration done during the first development cycle was

successful for most of the implemented components, the interfaces were appropriate, the data

model and architecture were easily updated, even if it was not. In the rare cases that led to

longer discussions, the approach taken allowed for focusing on the questions to be debated

(for example on the geographical coordinate system), instead of the constraints and

idiosyncrasies of the implementation.

Indeed, the implementation is still in a very early stage some components are not yet

available and others are missing some required functionalities. As a consequence, the

integration could only be partially done. Nevertheless, the parts that were integrated worked

as expected. The most important task for the next iteration period is to complete and improve

the system so that it provides all the basic functionalities that are obligatory to create and

execute experiments.

Every new feature that is implemented should be tested through integration tests for

compatibility and reliability with the other modules. This includes defining steps for each

integration test and executing them by the developers. Each step should be observed for

compliance with and deviations from the specifications and marked down. In case of

unconformities, the software should be updated and the integration tests should be executed

again. The current features that are implemented, have followed these steps and have ended

with success for most of them; should a failure have been observed, it is noted and taken into

account for correction during the next development cycle.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

95

Part V: Annex

Annex A Glossary

The RAWFIE glossary consists of generic terms, contributed by all partners, used across the

entire RAWFIE project.

A

Accounting Service

RAWFIE component. Component that keeps track of resources usage by individual users.

Aggregate Manager

Slice Federation Architecture (SFA) term. The Aggregate Manager API is the interface by

which experimenters discover, reserve and control resources at resource providers.

Avro

Apache Avro: a remote procedure call and data serialization framework

B

Booking Service

RAWFIE component. The Booking Service manages bookings of resources by registering

data to appropriate database tables.

Booking Tool

RAWFIE component. The Booking tool will provide the appropriate Web UI interface for

the experimenter to discover available resources and reserve them for a specified period.

C

Common Testbed Interface

RAWFIE component. The set of software and hardware functionalities each Testbed

provider should ensure, for the communication with Middle Tier software components of

RAWFIE, therefore for the integration with the RAWFIE platform

Component

A reusable entity that provides a set of functionalities (or data) semantically related. A

component may encapsulate one or more modules (see definition) and should provide a

well defined API for interaction

96

D

Data Analysis Engine

RAWFIE component. The Data Analysis Engine enables the execution of data processing

jobs by sending requests to a processing engine which will perform the computations

specified when the analytical task was defined through the Data Analysis Tool to be

transmitted to the processing engine for execution.

Data Analysis Tool

RAWFIE component. The Data Analysis Tool enables the user to browse available data

sources for subject to analytical treatment as well as previous analysis tasks' outcomes.

E

EDL Compiler & Validator

RAWFIE component. The EDL validator will be responsible for performing syntactic and

semantic analysis on the provided EDL scripts.

Experiment Authoring Tool

RAWFIE component. This component is actually a collection of tools for defining

experiments and authoring EDL scripts through RAWFIE web portal. It will provide

features to handle resource requirements/configuration, location/topology information,

task description etc.

Experiment Controller

RAWFIE component. The Experiment Controller is a service placed in the Middle tier and

is responsible to monitor the smooth execution of each experiment. The main task of the

experiment controller is the monitoring of the experiment execution while acting as

‘broker’ between the experimenter and the resources.

Experiment Monitoring Tool

RAWFIE component. Shows the status of experiments and of the resources used by

experiments.

Experiment Validation Service

RAWFIE component. The Experiment Validation Service will be responsible to validate

every experiment as far as execution issues concern.

M

Master Data Repository

RAWFIE component. Repository that stores all main entities that are needed in the

RAWFIE platforms. Is an SQL-database

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

97

Measurements Repository

RAWFIE component. Stores the raw measurements from the experiments

Message Bus

Also known as Message Oriented Middleware. A message bus is supports sending and

receiving messages between distributed systems. It is used in RAWFIE across all tiers to

enable asynchronous, event-based messaging between heterogeneous components.

Implements the Publish/Subscribe paradigm.

Module

A set of code packages within one software product that provides a special functionality

Monitoring Manager

RAWFIE component. Monitors the status of the testbed and the UxVs belonging to it, at

functional level, e.g. the ‘health of the devices’ and current activity.

N

Network Controller

Manages the network connections and the switching between different technologies in the

testbed in order to offer seamless connectivity in the operations of the system.

L

Launching Service

RAWFIE component. The Launching Service is responsible for handling requests for

starting or cancellation of experiments.

R

Resource Controller

RAWFIE component. The Resource Controller can be considered as a cloud robot and

automation system and ensures the safe and accurate guidance of the UxVs.

Resource Explorer Tool

RAWFIE component. The experimenter can discover and select available testbeds as well

as resources/UxVs inside a testbed with this tool. Administrators can manage the data.

Results Repository

RAWFIE component. Stores the results of data analyses.

Resource Specification (RSpec)

98

SFA term. This is the means that the SFA uses for describing resources, resource requests,

and reservations (declaring which resources a user wants on each Aggregate).

S

Schema Registry

A schema registry is a central service where data schemas are uploaded to. As an added

benefit each schema has versions with it can convert allowable formats to other ones (e.g.:

float to double) It maintains schemas for the data transferred and keeps revisions to be able

to upgrade the definitions as with the simple field conversion. Used in RAWFIE for

messages on the message bus.

Service

A component that is running in the system, providing specific functionalities and

accessible via a well known interface.

Slice Federation Architecture (SFA)

SFA is the de facto standard for testbed federation and is a secure, distributed and scalable

narrow waist of functionality for federating heterogeneous testbeds.

Subsystem

A collection of components providing a subset of the system functionalities.

System

A collection of subsystems and/or individual components representing the provided

software solution as a whole.

System Monitoring Service

RAWFIE component. Checks readiness of main components and ensure that all critical

software modules will perform at optimum levels. Predefined notification are triggered

whenever the corresponding conditions are met, or whenever thresholds are reached

System Monitoring Tool

RAWFIE component. Shows the status and the readiness of the various RAWFIE services

and testbed

T

Testbed

A testbed is a platform for conducting rigorous, transparent, and replicable testing of

scientific theories, computational tools, and new technologies.

In the context of RAWFIE, a testbed or testbed facility is a physical building or area where

UxVs can move around to execute some experiments. In addition, the UxVs are stored in

or near the testbed.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

99

Testbeds Directory Service

RAWFIE component. Represents a registry service of the middleware tier where all the

integrated testbeds and resources accessible from the federated facilities are listed,

belonging to the RAWFIE federation.

Testbed Manager

RAWFIE component. Contains accumulated information about the UxVs resources and

the experiments of each one of the federation testbeds.

Tool

A GUI implementation to do a special thing, e.g. the “Resource Explorer tool” to search

for a resource

U

Users & Rights Repository

RAWFIE component. Management of users and their roles. Is a directory services

(LDAP).

Users & Rights Service

RAWFIE component. Manages all the users, roles and rights in the system.

UxV

The generic term for unmanned vehicle. In RAWFIE, it can be either:

USV - Unmanned Surface vehicle.

UAV - Unmanned Aerial vehicle.

UGV - Unmanned Ground vehicle.

UUV - Unmanned Underwater vehicle.

UxV Navigation Tool

RAWFIE component. This component will provide to the user the ability to (near) real-

time remotely navigate a squad of UxVs.

UxV node

RAWFIE component. A single UxV node. The UxV is a complete mobile system that

interacts with the other Testbed entities. It can be remotely controlled or able to act and

move autonomously.

V

Visualisation Engine

RAWFIE component. Used for providing the necessary information to the Visualisation

tool, to communicate with the other components, to handle geospatial data, to retrieve data

100

for experiments from the database, to load and store user settings and to forward them to

the visualisation tool.

Visualisation Tool

RAWFIE component. Visualisation of an ongoing experiment as well as visualisation of

experiments that are already finished

W

Web Portal

RAWFIE component. The central user interface that provides access to most of the

RAWFIE tools/services and available documentation.

Wiki Tool

RAWFIE component. Provides documentation and tutorials to the users of the platform.

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

101

Annex B Requirements

The requirements listed in Table 82 are considered in the context of the integration.

Table 82: Requirements considered for the integration

PT-WEB-P-001 A web portal interface shall be provided to the users of the platform

to access almost all main functionalities.

PT-BOO-T-003 Booking Tool should delegate all its actions related to Booking of a

resource to the Booking Service

PT-BOO-T-004 Booking Tool may also interact with the Testbeds Directory Service

in order to retrieve information on unallocated testbed resources

PT-REE-T-004 Link to the Booking Tool should be provided

PT-EXM-T-003 Cancellation of running experiments should be possible via Web

Portal

PT-VIS-T-002 A 3D visualization should be available for the tracking of all moving

resources

PT-VIS-T-004 The Visualisation Tool shall provide access to information / features

associated to each UxV device on the geographic map

PT-DAA-T-001 Analysis tool will provide interface to data engine.

PT-DAA-T-002 Analysis tool will provide ability to query available data schemas

PT-DAA-T-003 Analysis tool will be able to read results from Results Database

PT-DAA-E-001 Analysis Engine will be able to query message bus streams

PT-DAA-E-001 Analysis Engine will be able to receive messages from Analysis Tool

PT-DAA-E-002 Analysis Engine will be able to write data to the Results Database

PT-DIR-S-007 The Testbed Directory Service shall provide the possibility to register

new resources belonging to a specific testbed in the RAWFIE

platform, as well as to unregister (delete) resources

PT-CPV-001 A tool for translating EDL into user directives shall be provided

PT-CPV-002 An experimenter should have the opportunity to use a code

generation engine

PT-CPV-003 Experiments defined via EDL shall be validated after their authoring

PT-CPV-004 The compiler and validator should communicate with the authoring

tool in order to transfer error indications and hints for solving them

PT-BOO-S-006 Booking Service should be able to compute and return feedback on

conflicting bookings for a provided booking request

PT-LAU-S-001 Launching Service should support short-term or manual launching of

an experiment initiated directly by an experimenter

PT-VIS-E-001 The Visualization Engine shall handle the communication with the

Message Bus, for the information that will be coming from the UxVs

PT-EXP-C-002 RAWFIE platform shall allow experimenters to remotely navigate

UxVs.

PT-EXP-C-006 The Experiment Controller shall support receiving feedback at

regular intervals from all testbed facilities about the progress of the

experiment in this time interval

PT-EXP-C-008 The Experiment Controller shall be able to continuously feed the

102

front-end tier (Experiment Monitoring Tool) giving the experimenter

a clear view of the experiment workflow as a whole

PT-EXA-T-001 Experiment Description Language (EDL) shall be used as a language

for the definition of experiment scenarios

PT-EXA-T-002 The EDL shall allow the definition of all necessary requirements for

an experiment

PT-EXA-T-003 For each defined experiment specific metadata, i.e. name, version,

date and description shall be defined.

PT-EXA-T-004 An experimenter shall be able to provide initial conditions and/or

configuration parameters for an experiment

PT-EXA-T-005 An experimenter shall be able to manage/guide the available booked

resources during experiment authoring

PT-EXA-T-008 An experimenter shall be able to provide navigation or movement

directives during experiment authoring

PT-EXA-T-009 An experimenter should be able to create groups of UxVs resources,

for which specific directives will apply.

PT-EXA-T-010 A textual editor shall be provided for the authoring of RAWFIE

experiments

PT-EXA-T-011 A visual/graphical editor shall be provided for the authoring of

RAWFIE experiments

PT-EXA-T-012 Platform shall allow saving, editing and/or deletion of an experiment

defined via EDL

PT-EXA-T-013 The visual editor should allow the definition of movement and

location waypoints from a map

PT-EXA-T-015 Validation of EDL script should be possible prior to or during saving

PT-EXV-S-001 RAWFIE shall provide a validator to constantly check experiment

scenarios during runtime

PT-EXV-S-002 The validation service should perform syntactic checking

PT-EXV-S-003 The validation service should perform semantic checking

TB-MOM-004 Testbed monitoring manager should be able to transmit the current

status to the System Monitoring Service.

TB-REC-003 The Resource Controller shall receive location messages from the

vehicles at regular intervals

TB-REC-005 For the experiment accomplishment the Resource Controller shall

operate in close coordination with the Experiment Controller

TB-MAN-005 Testbed Manager shall be periodically informed about the status of

all running experiments in the testbed

UXV-NET-006 UxV communication interoperability with RAWFIE (incoming)

UXV-NET-007 UxV communication interoperability with RAWFIE (outgoing)

UXV-SEN-005 UxVs should sent a notification to the Resource Controller when

they reach the desired location

 D6.1 (a): RAWFIE Operational Platform Testing and Integration Report (a)

103

References

[1] Xtext: https://eclipse.org/Xtext/index.html

[3] OpenLayers: http://openlayers.org/

https://eclipse.org/Xtext/index.html
http://openlayers.org/

