

Road-, Air- and Water-based Future Internet Experimentation

Project Acronym:	RAWFIE		
Contract Number:	645220		
Starting date:	Jan 1st 2015	Ending date:	Dec 31st, 2018

Deliverable Number and Title	D6.2: RAWFIE Platform Va	alidation (a)	
Confidentiality	PU	Deliverable type ¹	R
Deliverable File	D6.2	Date	31.07.2016
Approval Status ²	WP Leader	Version	1.0
Contact Person	Marcel Heckel	Organization	Fraunhofer
Phone	+49 351 / 4640-645	E-Mail	marcel.heckel@ivi.fraunhofer.de

¹ Deliverable type: P(Prototype), R (Report), O (Other)

² Approval Status: WP leader, 1st Reviewer, 2nd Reviewer, Advisory Board

AUTHORS TABLE

Name	Company	E-Mail
Marcel Heckel	Fraunhofer	marcel.heckel@ivi.fraunhofer.de
Philippe Dallemagne	CSEM	Philippe.dallemagne@csem.ch
Kakia Panagidi	UoA	kakiap@di.uoa.gr
Kostas Kolomvatsos	UoA	kostasks@di.uoa.gr
Giovanni Tusa	IES	g.tusa@iessolutions.eu
Vasil Kumanov	Epsilon Bulgaria	Vasil.kumanov@epsilon-bulgaria.com
Nikolaos Pringouris	HAI	Priggouris.nikolaos@haicorp.com
Jason Ramapuram	HES-SO	Jason-emmanuel.ramapuram@hesge.ch

REVIEWERS TABLE

Name	Company	E-Mail
Giovanni Tusa	IES	g.tusa@iessolutions.eu
Kakia Panagidi	UoA	kakiap@di.uoa.gr
Kostas Kolomvatsos	UoA	kostasks@di.uoa.gr
Michail Chatzidakis	UoA	mhatzi@di.uoa.gr

DISTRIBUTION

Name / Role	Company	Level of confidentiality ³	Type of deliverable	
Consortium		PU	R	

CHANGE HISTORY

Version	Date	Reason for Change	Pages/Sections Affected
0.1	2016-06-13	TOC / Initial version	all

³ Deliverable Distribution: PU (Public, can be distributed to everyone), CO (Confidential, for use by consortium members only), RE (Restricted, available to a group specified by the Project Advisory Board).

0.2	2016-06-30	Refined structure	all
0.3	2016-07-12	Validation by requirements: table added	Section 3
0.4	2016-07-15	Methodology and questionnaire updated	Section 2, 4, A
0.5	2016-07-18	Roadmap defined	Section 7
0.6	2016-07-20	Performance and technical evaluation updated	Section 2, 6
0.7	2016-07-25	Showcase scenarios updated	Section 5
0.8	2016-07-27	Review all contributions	all
0.9	2016-07-29	1 st Review	all
0.10	2016-07-30	2 nd Review	all
0.11	2016-07-31	Handle review comments	all
1.0	2016-07-31	Final version	all

Abstract:

The objective of this deliverable is a report on the validation of the RAWFIE platform. It describes the validation and evaluation procedures and their outcomes. The document will be released as a live document in three phases/cycles according to the roadmap.

This deliverable is based on the validation plan setup in D4.3 and on the results of tasks T6.1 and T6.2.

Keywords: tests, validation, evaluation, methodology, requirements, showcase, questionnaires, interviews

Part II: Table of Contents

Part II:	Tabl	e of Contents	5
List	of Fig	ures	7
List	of Ta	ples	8
Part III	I: Exe	cutive Summary	9
Part IV	': Mai	n Section	10
1 Int	trodu	tion	10
1.1	Sco	pe of D6.2	10
1.2	Rel	ation to other deliverables	10
2 M	ethod	ology	11
2.1	Che	eck which requirements are met	11
2.2	Ob	serving the end-user while operating the system	11
2.3	Qu	estionnaires and interviews	12
2.4	Eva	luation of data from observations and questionnaires/interviews	12
2.4	4.1	Qualitative data	13
2.4	4.2	Quantitative data	13
2.4	4.3	Errors and unexpected behaviour	13
2.5	Per	formance and technical evaluation	13
3 Va	alidati	on by requirements	15
4 Qu	uestio	nnaire for end-user validation	31
5 Sh	nowca	se to inform end-users	32
5.1	Sho	wcase scenario	32
5.2	Res	sults of questionnaire	33
5.2	2.1	Conclusions	33
5.2	2.2	New requirements	36
5.2	2.3	Improvements for next questionnaire	36
6 Pe	erform	ance and technical evaluation	36
6.1	Bei	hchmarking of the RAWFIE Message Broker	36
6.2	Loo	cal environment with simulated components	37

6	.3 Test	t environment with actual RAWFIE components	39
	6.3.1	Round Trip Time results	40
	6.3.2	End-to-end latency results	42
7	Roadma	p for the Platform Validation	42
8	Conclusi	ion and Outlook	43
An	nex		44
A	End-user	r questionnaire	44
В	Question	nnaire summary	49
С	Question	maire single results	60
D	Avro Sh	ema Messages	66
Е	Abbrevia	ations	67
F	Glossary	7	69
Ref	erences		76

List of Figures

Figure 1: EDL script use during showcase	33
Figure 2: End-to-end latency with the number of messages varying from 1 to 10,000	38
Figure 3: End-to-end latency with the number of messages varying from 1 to 100,000	38
Figure 4: End-to-end latency with the number of messages varying from 1 to 1,000,000	39
Figure 5: Schematic test setup for RAWFIE component tests	40
Figure 6: End-to-end latency in the second environment	42

List of Tables

Table 1: Validation by requirements	30
Table 2: Common abbreviations	69
Table 3: Notation	69

Part III: Executive Summary

The objective of this deliverable is a report on the validation and evaluation of the RAWFIE platform.

The first chapter introduces the methodology that was used and will be used for the next iteration of this document. Not all mentioned methods are applied in this iteration of the deliverable, due to the early state of the system. However, they are still mentioned for completeness and will be used in the following iterations.

The validation starts with a list stating which of the requirements from D3.2 are currently met. This gives a high-level overview of the state of the system.

Then, a questionnaire to be submitted to the end users is described in short. The current version of the questionnaire is mainly aimed at getting feedback from the interviewed end users, therefore to understand whether the building of the RAWFIE platform is on the right track, as well as to identify potential areas of improvements.

A dedicated chapter describes the showcase that was presented to the users. An execution of the validation scenarios of D4.6 was not feasible, as not all necessary components were ready. Based on the showcase however, the already mentioned questionnaire was completed by the users and the results and conclusions also presented in this chapter. The results of the questionnaire showed that RAWFIE is on the right track, but a lot of work is yet to be done.

Finally, an initial performance and technical evaluation of the RAWFIE system is done, mainly focusing on the latency and round trip time when using the message bus communication, in 2 different environments: a simulated one, with generic, no actual RAWFIE components used, and a more realistic one, where actual RAWFIE publish / consuming software, running on actual UxVs, was used. Such preliminary tests will help the consortium in order to have a general idea of the performance when using this specific communication pattern. More tests have to be carried out in the coming months during the second validation iteration, when the quantitative validation metrics will be more exhaustively evaluated against specific success criteria, that are going to be defined with Testbeds and UxVs owners.

The last chapter gives a short roadmap of the validation steps along with the conclusion and outlook.

Part IV: Main Section

1 Introduction

1.1 Scope of D6.2

This deliverable presents the approach and the results of the first evaluation and validation of the RAWFIE system. In addition to verification ("Are we building the product right?"), the validation ("Are we building the right product?") also benefits from end-user feedback. However, until now no direct validation by end-user has been done because essential components required will be completed in the current implementation period. Also, most of the validation scenarios outlined in D4.3 cannot be executed completely because several implementations are not ready and will be realised in the ongoing implementation phase. However, a showcase was prepared, where the current state of the system was presented to end-users, and a questionnaire followed the presentation. The evaluation of the system performance is conducted in this deliverable for a limited number of metrics and specific workflows, as described in Section 6. Future versions of the deliverable (starting with D6.4), will provide more comprehensive technical evaluation results, based on the quantitative metrics defined in D4.3 and related success criteria, that will be defined in D4.6.

Therefore, this deliverable focuses on the following aspects:

- Define the exact methodology to realise the validation by taking into account the validation scenarios and metrics defined in D4.3.
- Validate which requirements from D3.2 are currently met.
- Prepare the steps needed for end-user validation e.g., questionnaires.
- Describe a first showcase for the end-users based on the current system prototype.
- Evaluate the questionnaires that were filled out after the showcase.
- Preform an initial performance and technical evaluation of the system.
- Define a roadmap on how the validation will be realised in the next versions of this deliverable.

1.2 Relation to other deliverables

The methodology of D6.2 is based on the outcome of D4.3 and it checks if the validation-related requirements defined in D3.1/D3.2 are met.

D6.4 will be the second version of the "RAWFIE Platform Validation" deliverable. It will contain the end-user feedback, especially from the users of the first Open Call. The validation scenarios and validation template of D4.3 will be used to perform the validation test. It will also contain the evaluation, based on the metrics defined in D4.3 and related success criteria that are going to be defined in D4.6.

2 Methodology

The evaluation in this and the following deliverables will be based on the following methods

- Formally check which requirements are met (D3.2).
- Let end-user operate the system under guidance and supervision using the validation scenarios from D4.3 and following.
- Perform questionnaires fill-out and interviews with the end-user after using the system.
- Evaluate the data collected from observations and questionnaires/interviews.
- Execute performance and technical evaluation, using metrics and stress tests described in D4.3 and following.

In this deliverable the actual operation of the system is presented by a showcase that shows the current possibilities of the system to the users (the users will not interact with the system at this stage). This is unavoidable as several implementations are not ready and many validation scenarios cannot be executed. Based on the showcase, the end-users will fill out the questionnaire.

2.1 Check which requirements are met

The check of requirements is reported in a table where each requirement corresponds to a row. For each requirement it is stated if it is currently met or not. If a requirement is not met, a short comment field must be filled out explaining the reason.

The table provides a quick overview about the readiness of the system.

2.2 Observing the end-user while operating the system

The end users will operate the system by execution of the validation scenarios defined in D4.3 (and following documents). For each step it will be recorded whether the step could successfully be executed or not and a comment will be added in case of an error. Also, the metrics defined in D4.3 (and following documents) will be checked whether they are met during the execution of the scenario or not and then used for the evaluation against the corresponding success criteria.

While the end users operate the system they will be observed [3]. The observation may be done in two different ways:

- Direct watching the users
 - For this the observer will directly watch the end-user while operating the system.
 - This may also be recoded via a video camera.
 - The observer constantly takes notes of the actions and failures of the user.
 - The observer may also answer questions of the user, if the user in not able to perform the scenario steps on his/her own (this will also be noted).
 - For small number of users.

- Recording remote actions on the system
 - If the users interact with RAWFIE via the web portal, their actions on the web page will be recorded for later evaluation. This can be done with an website analysis tool like Piwik4, Etracker5, Reinvigorate6, Mint7 or Open Web Analytics8 (the decision which one to use will be made in the near future).
 - These systems collect different statistics like how long a user stayed on a page, which pages were visited more frequently, or section on page which was clicked frequently.
 - For large amount of users.

The main advantage of observing users is that it "does not rely on people's willingness or ability to provide information" [3]. On the downside, you may not understand "why people behave as they do". For direct watching this can be compensated by querying the users afterwards for the reason of the unusual behaviour. Another disadvantage of direct watching is that it is expensive and time-consuming.

2.3 Questionnaires and interviews

Questionnaires [2] and interviews [4] will be performed after the users have interacted with or have seen the RAWFIE system. Questionnaires can be filled out on paper or online (online questionnaires will reduce the amount of work to evaluate them). Interviews will be based on the questionnaires but may also collect additional information should they occur during the conversation.

The questionnaire uses closed-ended (include a list of predetermined answers from which participants can choose) and open-ended questions (free text answers). Open-ended questions are used when possible answers are not known. But they are time-consuming to fill in and to analyse. Therefore, closed-ended questions are preferred as they are easier to fill in and to analyse. Additionally, most closed-ended questions will have an "other" option with a free text answer, to cover non-foreseen information.

2.4 Evaluation of data from observations and questionnaires/interviews

The evaluation of the collected data from the observations and questionnaires/interviews analyses two main categories of data: qualitative data [5] (data in information in non-numeric form) and quantitative data [6] (data in information in numeric form). Another category is

⁴ https://piwik.org/

⁵ <u>https://www.etracker.com</u>

⁶ <u>https://www.reinvigorate.net</u>

⁷ <u>http://haveamint.com/</u>

⁸ <u>http://www.openwebanalytics.com/</u> T

formed by the occurred errors and unexpected behaviour of the system during the validation scenarios.

2.4.1 Qualitative data

Qualitative data mainly results from the direct watching the users and open-ended questions. The analysis of qualitative data relies heavily on interpretation and is time-consuming and labour-intensive. The process will adopt the schema described in [5]

- *Review the data*: review the data several times until one has a general understanding on the ideas.
- Organize the data: Group data based on topics, stakeholder or date.
- *Code the data*: Identify and label common trends or ideas that appear repeatedly.
- *Interpret the data*: start by key themes/ideas and factor these themes/ideas by revisiting the review.

2.4.2 Quantitative data

Quantitative data is mainly a result of action recording on the system or of closed-ended questions. Quantitative data can easily be visualized by using graphs and charts [1]. For example pie charts could be used at some preferred options of the system or bar chars to show the percentage of acceptance of different parts of the system.

2.4.3 Errors and unexpected behaviour

Errors and unexpected behaviour during the execution of the validation scenarios will be recorded and documented for each validation scenario step. These will be handled and fixed in later implementation phases.

2.5 Performance and technical evaluation

The technical evaluation will be based on the measurements of quantitative metrics, as the ones already defined and classified in deliverable D4.3, and further improvements / modifications that will be elaborated in subsequent iterations (e.g. in the D4.6). Such metrics will be for example, all the ones belonging to the "Interconnectivity/Data communication" category (section 4.10 of D4.3).

The methodology for performance and technical evaluation will include the following steps:

- Definition of specific test cases, according to the metric/s that should be measured and evaluated
 - test cases may be the validation scenarios already defined in D4.3, or just a subset of the steps and workflows included on each validation scenario, meaning that the metrics under investigation can be measured, in such cases, while running the validation scenarios themselves.

- or they may consist of dedicated tests and workflows (e.g. stress tests with real or simulated sending/receiving components)
- Preparation of the software components for monitoring and collecting the investigated metrics, also using external monitoring tools if needed and where applicable, to record (persist) the results.
- Execution of the tests while recording the results.
- Analysis of the results and final evaluation of the metrics against the defined "success criteria" for each of them.

Success criteria are the criteria to evaluate if the recorded results about a specific metric, meet the expectations and are in line with the performance requirements. For example, in the case of the "End-to-End Latency" metric, a possible success criterion would be that if the recorded values are below the 20ms threshold, then the evaluation is positive. In the opposite case the evaluation is negative, normally meaning that some adjustments/interventions at the software or hardware level, is needed.

3 Validation by requirements

The following Table 1 lists all requirements from D3.2 and states if they are currently met or not. The "OK" column contains a Y(yes) in the requirement is met and a N (no) if not.

Regarding the development plan the most planed features are fulfilled, except the booking functionalities (which are missing completely until now):

- Exploring testbeds & UxVs
- Define and execute a simple mission (e.g. drive a cycle and send some measurements) via EDL
- Send UxV position and measurements to middleware
- Visualization of experiments and measurements in GUI
- Execute a simple data analysis scenario

However, there is still a lot of work to be done, to enable the full workflow from exploring testbeds & UxVs, booking UxVs, write the EDL script, executed the experiment automatically, visualize experiment, store measurement, analyse and visualize measurements and charge the experimenter for resource usage. The upcoming development iteration will go a big step forward in this direction.

No	ID	Component	Title	OK	Comment
1	PT-GEN-	General	RAWFIE Platform should adopt Sliced Federated	Ν	Planned for 2 nd dev.
	R-001		Architecture (SFA)		iteration
2	PT-GEN-	General	RAWFIE platform shall support various roles with different	Ν	Roles not evaluated
	R-002		privileges at every level of access.		
3	PT-GEN-	General	The RAWFIE Data model should include all basic entities	Y	
	R-003		that are used or/and exchanged by the various components of		
			the RAWFIE Platform		
4	PT-GEN-	General	RAWFIE platform shall provide appropriate data storage for	Y	POSTGRES Database
	R-004		information that needs to be persisted, exchanged, or analysed		used for storage
			by the various tools and services.		
5	PT-WEB-	Web Portal	A web portal interface shall be provided to the users of the	Y	Main access to
	P-001	Tool	platform to access almost all main functionalities.		implemented services and
					tools is achieved via a

					web portal
6	PT-WEB- P-002	Web Portal Tool	Web portal usage shall be allowed only to authenticated users	Y	
7	PT-WEB- P-003	Web Portal Tool	A tutorial or similar type of documentation shall be provided to the users of the platform	N	A Wiki Tool will be integrated in the next iteration.
8	РТ-ВОО- Т-001	Booking Tool	Booking Tool should allow booking of resources at the experimenter level for a specified period and for selected resources	N	Planned for 2 nd dev. iteration
9	РТ-ВОО- Т-002	Booking Tool	Booking Tool functionality shall be compatible with the SFA myslice architecture and the notion of slices reservations	Ν	Planned for 2 nd dev. iteration
10	РТ-ВОО- Т-003	Booking Tool	Booking Tool should delegate all its actions related to Booking of a resource to the Booking Service	N	Planned for 2 nd dev. iteration
11	РТ-ВОО- Т-004	Booking Tool	Booking Tool may also interact with the Testbeds Directory Service in order to retrieve information on unallocated testbed resources	N	Planned for 2 nd dev. iteration
12	РТ-ВОО- Т-005	Booking Tool	Booking Tool should communicate with the underline services using JSON formatted messages (through an RPC or REST API)	Ν	Planned for 2 nd dev. iteration
13	РТ-ВОО- Т-006	Booking Tool	Booking Tool should provide appropriate functionality for viewing the reservations of a user/experimenter	N	Planned for 2 nd dev. iteration
14	РТ-ВОО- Т-007	Booking Tool	Booking Tool should allow editing of existing Reservations	N	Planned for 2 nd dev. iteration
15	РТ-ВОО- Т-008	Booking Tool	Booking Tool should allow cancellation of existing Reservations	N	Planned for 2 nd dev. iteration
16	РТ-ВОО- Т-009	Booking Tool	Booking Tool should allow creation of bookings through an intuitive UI interface	N	Planned for 2 nd dev. iteration
17	РТ-ВОО- Т-010	Booking Tool	Appropriate notification mechanism should be provided to the user in case status of reservation request is not directly available.	N	Planned for 2 nd dev. iteration
18	PT-BOO- T-011	Booking Tool	Booking Tool may provide assistance of feedback to the potential experimenter during the booking process	N	Planned for 3 nd dev. iteration
19	PT-BOO-	Booking Tool	Booking functionality should provide means to ensure	Ν	Planned for 2 nd dev.

	T-012		fairness in resource booking as well as protect for malevolent		iteration
			actions that a user may perform.		
20	PT-BOO-	Booking Tool	RAWFIE platform should allow virtualization of available	Ν	To be checked if feasible
	T-013		UxVs resources during reservation process		during 3 rd iteration
21	PT-SYM-	System	Listing and/or visualisation of current system health status	Y	
	T-001	Monitoring	shall be available		
		Tool			
22	PT-SYM-	System	The current system health status should be grouped	Ν	Currently only one list for
	T-002	Monitoring	thematically.		all
		Tool			
23	PT-SYM-	System	Filtering of the accessible component health statuses by user	Ν	Will be implemented in
	T-003	Monitoring	roles/rights should be possible.		the next iteration
		Tool			
24	PT-SYM-	System	The health statuses webpage should be updated automatically.	Y	
	T-004	Monitoring			
		Tool			
25	PT-SYM-	System	The health status information should include a severity	Y	
	T-005	Monitoring	indication and possibly textual information with additional		
		Tool	details.		
26	PT-REE-	Resource	The UI interface shall illustrate testbed and UxV information	Y	
	T-001	Explorer Tool	of the RAWFIE federation that the experimenters should take		
			advantage of		
27	PT-REE-	Resource	Registration of testbeds and UxVs may be possible via the	Ν	Planned for 2 nd dev.
	T-002	Explorer Tool	Web Portal		iteration
28	PT-REE-	Resource	RAWFIE platform should provide a Resource Discovery tool	Y	
	T-003	Explorer Tool	for fine-grained resource searches		
29	PT-REE-	Resource	Link to the Booking Tool should be provided	Ν	Booking Tool not
	T-004	Explorer Tool			implemented. Planned for
					2 nd dev. iteration
30	PT-EXA-	Experiment	Experiment Description Language (EDL) shall be used as a	Y	A first version of EDL is
	T-001	Authoring Tool	language for the definition of experiment scenarios		available
31	PT-EXA-	Experiment	The EDL should allow the definition of all necessary	Y	The EDL already fulfils
	T-002	Authoring Tool	requirements for an experiment		the requirement

32	PT-EXA-	Experiment	For each defined experiment specific metadata, i.e. name,	Y	The EDL already fulfils
	T-003	Authoring Tool	version, date and description shall be defined.		the requirement
33	PT-EXA-	Experiment	An experimenter shall be able to provide initial conditions	Y	The EDL already fulfils
	T-004	Authoring Tool	and/or configuration parameters for an experiment		the requirement
34	PT-EXA-	Experiment	An experimenter shall be able to manage/guide the available	Y	The EDL already fulfils
	T-005	Authoring Tool	booked resources during experiment authoring		the requirement
35	PT-EXA-	Experiment	An experimenter shall be able to define the type of	Ν	Planned for 2 nd dev.
	T-006	Authoring Tool	information to be gathered and/or stored by UxV resource(s)		iteration
36	PT-EXA-	Experiment	An experimenter shall be able to define the type of metrics to	Ν	Planned for 2 nd dev.
	T-007	Authoring Tool	be gathered and/or stored during an experiment and/or per		iteration
			UxV resource		
37	PT-EXA-	Experiment	An experimenter shall be able to provide navigation or	Y	The available editors offer
	T-008	Authoring Tool	movement directives during experiment authoring		this functionality
38	PT-EXA-	Experiment	An experimenter should be able to provide formation	Ν	The current version of the
	T-009	Authoring Tool	information for a group of UxVs resources		EDL partially covers this
					requirement
39	PT-EXA-	Experiment	A textual editor shall be provided for the authoring of	Y	The RAWFIE already
	T-010	Authoring Tool	RAWFIE experiments		fulfils the requirement
40	PT-EXA-	Experiment	A visual/graphical editor shall be provided for the authoring	Ν	Planned for 2 nd dev.
	T-011	Authoring Tool	of RAWFIE experiments		iteration
41	PT-EXA-	Experiment	Platform shall allow saving, editing and/or deletion of an	Y	The RAWFIE already
	T-012	Authoring Tool	experiment defined via EDL		fulfils the requirement
42	PT-EXA-	Experiment	The visual editor should allow the definition of movement	Y	The RAWFIE already
	T-013	Authoring Tool	and location waypoints in a map		fulfils the requirement
43	PT-EXA-	Experiment	During authoring of an experiment selection of resources	Ν	Planned for 2 nd dev.
	T-014	Authoring Tool	should be limited only to the ones previously reserved from		iteration
			the user at the foreseen time of experiment		
44	PT-EXA-	Experiment	Validation of EDL script should be possible prior to or during	Y	The RAWFIE already
	T-015	Authoring Tool	saving		fulfils the requirement
45	PT-EXA-	Experiment	An experimenter shall have the means to define actions or	Ν	Planned for 2 nd dev.
	T-016	Authoring Tool	tasks that should run on a periodic or ad hoc basis during		iteration
			execution of an experiment		
46	PT-EXM-	Experiment	Experiment Monitoring Tool shall provide overview of	Ν	Experiment Monitoring

	T-001	Monitoring Tool	experiments of a user		Tool not implemented
47	РТ-ЕХМ- Т-002	Experiment Monitoring Tool	Experiment Monitoring and Visualisation should be integrated	N	Experiment Monitoring Tool not implemented
48	PT-EXM- T-003	Experiment Monitoring Tool	Cancellation of running experiments should be possible via Web Portal	N	Experiment Monitoring Tool not implemented
49	PT-NAV- T-001	UxV Navigation Tool	This component will provide to the user the ability to remotely navigate a squad of UxVs through a user friendly interface.	N	Navigation tool not implemented
50	PT-NAV- T-002	UxV Navigation Tool	The tool should provided some validation of user's instructions	N	Navigation tool not implemented
51	PT-NAV- T-003	UxV Navigation Tool	UxV Navigation Tool should be available for the navigation of all moving resources	N	Navigation tool not implemented
52	PT-NAV- T-004	UxV Navigation Tool	UxV Navigation Tool should be available to read from the database a detailed version of the map of the available areas	N	Navigation tool not implemented
53	PT-VIS-T- 001	Visualisation Tool	The Visualisation Tool shall allow the visualisation of information about the running experiments, in tabular/graphical form	Y	
54	PT-VIS-T- 002	Visualisation Tool	A 3D visualization should be available for the tracking of all moving resources	N	
55	PT-VIS-T- 003	Visualisation Tool	The Visualisation Tool may allow visualisation of video streams coming from the experiment, and experiment's camera control	N	Planned for 2 nd dev iteration
56	PT-VIS-T- 004	Visualisation Tool	The Visualisation Tool shall provide access to information UxV device on the geographic map	Y	
57	PT-VIS-T- 005	Visualisation Tool	The Visualisation Tool shall allow organization and manipulation of multiple geographic layers	Y	
58	PT-VIS-T-	Visualisation	Possibility of Adding/Removing/Updating graphical widgets	Y	

	006	Tool	should be provided		
59	PT-VIS-T-	Visualisation	Possibility to display both actual and expected UxVs' route	Y	
	007	Tool	and position should be provided		
60	PT-DAA-	Data Analysis	Analysis tool will provide interface to data engine.	Ν	Planned for 2 nd dev
	T-001	Tool			iteration
61	PT-DAA-	Data Analysis	Analysis tool will provide access to past experiments	Y	Graphite is in place
	T-002	Tool			
62	PT-DAA-	Data Analysis	Analysis tool will provide ability to query message bus	Ν	Planned for 2 nd dev
	T-003	Tool	streams		iteration
63	PT-DAA-	Data Analysis	Analysis tool will provide interface to end running jobs	Y	Access to spark master is
	T-004	Tool			in place
64	PT-DAA-	Data Analysis	Analysis tool will provide a simple metric selection interface,	Ν	Planned for 2 nd dev
	T-005	Tool	a view of the result stream & the job status tab		iteration
65	PT-DIR-	Testbeds	The Testbed Directory Service shall provide access to	Y	
	S-001	Directory	information on all Testbeds registered in RAWFIE		
		Service			
66	PT-DIR-	Testbeds	The Testbed Directory Service should provide access to	Ν	Planned for 2 nd dev
	S-002	Directory	information on all Testbeds registered in RAWFIE according		iteration
		Service	to predefined filters		
67	PT-DIR-	Testbeds	The Testbed Directory Service shall provide access to	Y	
	S-003	Directory	information about available resources (UxVs) belonging to		
		Service	the testbeds registered in RAWFIE		
68	PT-DIR-	Testbeds	The Testbed Directory Service should provide access to	Ν	Planned for 2 nd dev
	S-004	Directory	information on available resources (UxVs) belonging to the		iteration
		Service	testbeds registered in RAWFIE, and according to predefined		
			filters		
69	PT-DIR-	Testbeds	The Testbed Directory Service shoud provide the possibility	Y	
	S-005	Directory	to register new testbeds in the RAWFIE platform, as well as		
		Service	to unregister (delete) testbeds from the platform		
70	PT-DIR-	Testbeds	Some basic query capabilities should be provided	Ν	Planned for 2 nd dev
	S-006	Directory			iteration
		Service			
71	PT-DIR-	Testbeds	The Testbed Directory Service shall provide the possibility to	Y	

	S-007	Directory	register new resources belonging to a specific testbed in the		
		Service	RAWFIE platform, as well as to unregister (delete) resources		
72	PT-CPV-	EDL Compiler	A tool for translating EDL into user directives shall be	Y	A first version is
	001	and Validator	provided		available. To be improved
					in 2 nd dev. iteration
73	PT-CPV-	EDL Compiler	An experimenter should have the opportunity to use a code	Y	The RAWFIE already
	002	and Validator	generation engine		fulfils the requirement
74	PT-CPV-	EDL Compiler	Experiments defined via EDL shall be validated after their	Y	The RAWFIE already
	003	and Validator	authoring		fulfils the requirement
75	PT-CPV-	EDL Compiler	The compiler and validator should communicate with the	Y	The RAWFIE already
	004	and Validator	authoring tool in order to transfer error indications and hints		fulfils the requirement
			for solving them		
76	PT-EXV-	Experiment	RAWFIE shall provide a validator to constantly check	Y	The RAWFIE already
	S-001	Validation	experiment scenarios during runtime		fulfils the requirement
		Service			
77	PT-EXV-	Experiment	The validation service should perform syntactic checking	Y	The RAWFIE already
	S-002	Validation			fulfils the requirement
		Service			
78	PT-EXV-	Experiment	The validation service should perform semantic checking	Y	The RAWFIE already
	S-003	Validation			fulfils the requirement
		Service			
79	PT-USR-	Users & Rights	User login credentials checking shall be provided	Y	
	S-001	Service			
80	PT-USR-	Users & Rights	RAWFIE platform shall support various roles with different	Y	
	S-002	Service	privileges at every level of access.		
81	PT-USR-	Users & Rights	The Users & Rights Service may provide a proxy service for	Ν	To be checked if needed
	S-003	Service	web application that do not check access rights.		
82	PT-BOO-	Booking	Booking Service should support reservations of resources at	Ν	Planned for 2^{nd} dev.
	S-001	Service	both user level and experiment level		iteration
83	PT-BOO-	Booking	User level booking should be triggered by the Booking Tool	N	Planned for 2 nd dev.
	S-002	Service	via a REST API.		iteration
84	PT-BOO-	Booking	Experiment level booking should be triggered by the	Y	During experiment
	S-003	Service	experimenter before issuing a manual or schedule launching		authoring selection of

			of a validated experiment		resources is available only
					from a user reservation
85	PT-BOO-	Booking	Experiment level booking should support both immediate	Ν	
	S-004	Service	booking as well as booking at a future time		
86	PT-BOO-	Booking	Booking Service should provide all the necessary methods to	Ν	Planned for 2 nd dev.
	S-005	Service	manage the bookings including addition, modification and		iteration
87		Poolving	Pooking Service should be able to compute and return	N	Plannad for 2 nd day
07	F 1-BOO-	Service	feedback on conflicting bookings for a provided booking	IN	iteration
	3-000	Service	request		liciation
88	PT-BOO-	Booking	Reservation Data should be persisted in order to survive	Ν	Planned for 2 nd dev.
	S-007	Service	service failures and be available by other services		iteration
89	PT-BOO-	Booking	Historical data retrieval for Bookings/Reservations should be	Ν	Planned for 2 nd dev.
	S-008	Service	available on demand		iteration
90	PT-BOO-	Booking	Booking functionality shall support reservation of resources	Ν	Planned for 3 rd dev.
	S-009	Service	involving multiple testbeds		iteration
91	PT-BOO-	Booking	Booking functionality should be able to correctly handle	Ν	Planned for 2 nd dev.
	S-010	Service	simultaneous Reservations requests by end users		iteration
92	PT-BOO-	Booking	Notification mechanisms may be provided for experiments	Ν	Planned for 3 rd dev.
	S-011	Service	scheduled for execution in the future.		iteration
93	PT-LAU-	Launching	Launching Service should support short-term or manual	Y	
	S-001	Service	launching of an experiment initiated directly by an		
			experimenter		
94	PT-LAU-	Launching	Launching Service should support long-term or scheduled	Ν	Planned for 2 nd dev.
	S-002	Service	launching of an experiment initiated directly by an		iteration
			experimenter		
95	PT-LAU-	Launching	Each executing experiment should be uniquely identified	Y	
	S-003	Service	within RAWFIE ecosystem		
96	PT-LAU-	Launching	During launching it must be ensured that the experiment to be	Ν	Planned for 2 nd dev.
	S-004	Service	started has been validated based on spatio-temporal		iteration (needs
			constraints		Experiment Validation
					Service to be available)
97	PT-LAU-	Launching	During launching it must be ensured that the experiment to be	Y	

	S-005	Service	started belongs to an authorized user of the RAWFIE platform		
98	PT-LAU-	Launching	The Launching Service should be able to address	Y	
	S-006	Service	simultaneous requests for starting an experiment		
99	PT-LAU-	Launching	The Launching Service should send an appropriate message	Y	
	S-007	Service	upon successful starting of an experiment		
100	PT-LAU-	Launching	The Launching Service may interact with other components	Y	
	S-008	Service	or database services in order to retrieve information needed		
			for deciding on launching an experiment		
101	PT-LAU-	Launching	Interactions of the launching service with database services	Y	
	S-009	Service	and/or other components should respect the RAWFIE		
			platform boundary		
102	PT-LAU-	Launching	Launching service should support requests for experiment	Y	
	S-010	Service	cancellation		
103	PT-LAU-	Launching	RAWFIE platform shall provide means to ensure fairness in	Ν	
	S-011	Service	experiments execution		
104	PT-LAU-	Launching	Launching service should provide appropriate feedback to the	Ν	Planned for 2 nd dev.
	S-012	Service	requested entity regarding failures on fulfilling a request		iteration
105	PT-LAU-	Launching	Launching service should not alter or modify any information	Y	
	S-013	Service	related to the actual execution of an experiment		
106	PT-VIS-E-	Visualisation	The Visualization Engine shall handle the communication	Y	
	001	Engine	with the Message Bus, for the information that will be coming		
			from the UxVs		
107	PT-VIS-E-	Visualisation	The Visualization Engine shall provide a GIS server capable	Y	
	002	Engine	of handling geographical layers (overlays)		
108	PT-VIS-E-	Visualisation	The Visualization Engine may allow cache of data for faster	Ν	Not planned for now, we
	003	Engine	access to the available geographic layers		do not have in house
					maps for that
109	PT-VIS-E-	Visualisation	The Visualization Engine shall provide the possibility to reply	Ν	Planned for 2 nd dev.
	004	Engine	experiments using historical data		iteration
110	PT-EXP-	Experiment	Cancellation of running experiments should be possible	Ν	Experiment Controller not
	C-001	Controller			implemented
111	PT-EXP-	Experiment	RAWFIE platform shall allow experimenters to remotely	Ν	Experiment Controller not
	C-002	Controller	navigate UxVs.		implemented

112	PT-EXP-	Experiment	The Experiment Controller shall support the execution of	Ν	Experiment Controller not
	C-003	Controller	experiments that involve multiple testbeds		implemented
113	PT-EXP-	Experiment	The Experiment Controller shall be able to support multiple	Ν	Experiment Controller not
	C-004	Controller	experiments running		implemented
114	PT-EXP-	Experiment	The Experiment Controller shall be able to analyse the whole	Ν	Experiment Controller not
	C-005	Controller	experiment script and dispatch the appropriate parts to each responsible testbed facility		implemented
115	PT-EXP-	Experiment	The Experiment Controller shall support receiving feedback	Ν	Experiment Controller not
	C-006	Controller	at regular intervals from all testbed facilities about the		implemented
			progress of the experiment in this time interval		
116	PT-EXP-	Experiment	The Experiment Controller shall be able to override the order	Ν	Experiment Controller not
	C-007	Controller	of instructions described in the input script while the		implemented
			experiment is running		
117	PT-EXP-	Experiment	The Experiment Controller shall be able to continuously feed	Ν	Experiment Controller not
	C-008	Controller	the front-end tier (Experiment Monitoring Tool) giving the		implemented
			experimenter a clear view of the experiment workflow as a		
			whole		
118	PT-EXP-	Experiment	The Experiment Controller shall send distinct error and	Ν	Experiment Controller not
	C-009	Controller	warning messages in every case the experiment's state		implemented
			diverges from the aimed target		
119	PT-DAA-	Data Analysis	Analysis engine will support accepting of analysis jobs	Y	Via distribution from
	S -001	Engine			Zeppelin or JAR submit
120	PT-DAA-	Data Analysis	Analysis engine will support compiling analysis jobs	Y	Via Apache Zeppelin
	S -002	Engine			
121	PT-SYM-	System	RAWFIE middle tier shall include a module to monitor the	Y	
	S-001	Monitoring	performance of the middle tier components.		
		Service			
122	PT-SYM-	System	RAWFIE Testbeds and UxVs statuses should be monitored	Ν	UxVs statuses currently
	S-002	Monitoring			not sent by the
		Service			Monitoring Manager of
					the testbed
123	PT-SYM-	System	RAWFIE system administrators should be informed if critical	Ν	Need to be configured in
	S-003	Monitoring	components are down		Icinga

		Service			
124	PT-SYM-	System	User may register for notifications if special components are	Ν	Need to be configured in
	S-004	Monitoring	down		Icinga
		Service			
125	PT-SYM-	System	Notifications about planned downtimes	Ν	Need to be configured in
	S-005	Monitoring			Icinga
		Service			
126	PT-ACC-	Accounting	The accounting service should be capable to accept different	Ν	Accounting Service not
	S-001	Service	cost models regarding RAWFIE usage on a per service basis		implemented
127	PT-ACC-	Accounting	The accounting service should be capable to gather statistics	Ν	Accounting Service not
	S-002	Service	regarding usage of the platform by experimenters.		implemented
128	PT-ACC-	Accounting	The RAWFIE platform should record information related to	Ν	Accounting Service not
	S-003	Service	time and type of access for a service by a user.		implemented
129	PT-ACC-	Accounting	The cost model used may take into consideration the overall	Ν	Accounting Service not
	S-004	Service	time of experiments executed by a user of the platform.		implemented
130	PT-ACC-	Accounting	The accounting service may support different types of	Ν	Accounting Service not
	S-005	Service	charging based on the type of the experimenter (industrial,		implemented
			research, university etc.)		
131	PT-ACC-	Accounting	The accounting service may support predefined types of	Ν	Accounting Service not
	S-006	Service	memberships regarding usage of the platform that may		implemented
			depend on various types of parameters		
132	PT-ACC-	Accounting	The accounting service should be able to handle the addition	Ν	Accounting Service not
	S-007	Service	of new services that may be incorporated in the RAWFIE		implemented
			platform during time.		
133	TB-GEN-	General	Each UxV Testbed should provide a Slice Interface for	Ν	
	R-001		federating their capabilities/resources to the experimenter.		
134	TB-GEN-	General	Each Testbed should provide the exact boundaries within	Y	
	R-002		which its UxVs can operate		
135	TB-GEN-	General	Testbed areas should at least be able to host/operate multiple	Y	
	R-003		UxVs of one or more types		
136	TB-GEN-	General	Testbed areas environment should be closely monitored	Ν	Testbed areas not
	R-004				available during 1 st
					iteration

137	TB-GEN-	General	Indoor spaces of a testbed should provide a shielded indoor	Y	
120	K-005		environment	NT	
138	IB-GEN-	General	lestbed facility areas should comprise storing spaces and be	Ν	Cannot be validated
	R-006		able to receive inspect and assemble and/or fix UxVs		during 1 st iteration
139	TB-GEN-	General	Testbed facilities should provide emergency services in an	Ν	Cannot be validated
	R-007		extraordinary event		during 1 st iteration
140	TB-GEN-	General	Testbed areas should provide proper facilities and equipment	Ν	Cannot be validated
	R-008				during 1 st iteration
141	TB-GEN-	General	Testbed must provide dedicated computational resources	Ν	Cannot be validated
	R-009				during 1 st iteration
142	TB-GEN-	General	Testbeds should be supported by on-site personnel	Ν	Cannot be validated
	R-010				during 1 st iteration
143	TB-GEN-	General	Testbeds should conform to all legal restrictions	Ν	Cannot be validated
	R-011				during 1 st iteration
144	TB-	Monitoring	The Monitoring Manager component should be able to	Ν	Monitoring manager not
	MOM-001	Manager	provide information about the capabilities of each resource		implemented
		0	node.		1
145	TB-	Monitoring	The Monitoring Manager component should collect and	Ν	Monitoring manager not
	MOM-002	Manager	report current status of testbed facilities		implemented
146	TB-	Monitoring	The Monitoring Manager component should store	Ν	Monitoring manager not
	MOM-003	Manager	periodically all testbed information		implemented
147	TB-	Monitoring	Testbed monitoring manager should be able to transmit the	Ν	Monitoring manager not
	MOM-004	Manager	current status to the System Monitoring Service.		implemented
148	TB-NEC-	Network	The RAWFIE communication resources shall be managed to	Ν	Network Controller not
	001	Controller	offer seamless connectivity in the normal operations of the		implemented
			system.		1
149	TB-NEC-	Network	Provision of network communication resource	Ν	Network Controller not
	002	Controller			implemented
150	TB-NEC-	Network	Alternative communication system	Ν	Network Controller not
	003	Controller			implemented
151	TB-NEC-	Network	Management of the communication system	Ν	Network Controller not
	004	Controller			implemented
152	TB-NEC-	Network	Time constraint verification and notification	Ν	Network Controller not

					-
	005	Controller			implemented
153	TB-REC-	Resource	RAWFIE platform shall support a semi-autonomously way of	Y	
	001	Controller	navigation of the UxVs		
154	TB-REC-	Resource	RAWFIE platform should be able to activate the "Emergency	Ν	
	002	Controller	Scenario"		
155	TB-REC-	Resource	The Resource Controller shall receive location messages from	Y	
	003	Controller	the vehicles at regular intervals		
156	TB-REC-	Resource	The Resource Controller shall transmit the next location for	Y	
	004	Controller	the current experiment to the vehicles		
157	TB-REC-	Resource	The Resource Controller shall be able to plan the next	Y	
	005	Controller	location that will be transmitted in the vehicle taking into		
			account the locations of all UxVs that are active in that		
			testbed		
158	TB-REC-	Resource	For the experiment accomplishment the Resource Controller	Ν	Experiment Controller not
	006	Controller	shall operate in close coordination with the Experiment		available during 1 st dev.
			Controller		iteration
159	TB-PRO-	Testbed Proxy	Testbed proxy should act as a reverse proxy	Ν	Removed from
	001				architecture
160	TB-PRO-	Testbed Proxy	Testbed proxy contains Inner and Outer Firewall	Ν	Removed from
	002				architecture
161	TB-MAN-	Testbed	Testbed Manager shall support permanent storage of all	Ν	
	001	Manager	testbed attributes and resources attributes that belong to		
			testbed		
162	TB-MAN-	Testbed	Testbed Manager shall provide information about the	Ν	
	002	Manager	capabilities of each resource node		
163	TB-MAN-	Testbed	Testbed Manager shall check periodically the status of all	Ν	Status checked only for
	003	Manager	other services running at testbed level		Testbed Manager
164	TB-MAN-	Testbed	Testbed Manager shall contain a registration log for all the	Ν	
	004	Manager	experiments executed in the testbed		
165	TB-MAN-	Testbed	Testbed Manager shall be periodically informed about the	Y	
	005	Manager	status of all running experiments in the testbed		
166	TB-MAN-	Testbed	Testbed Manager shall store configuration parameters for the	Ν	
	006	Manager	UxVs in the relevant testbed		

167	TB-MAN-	Testbed	Testbed Manager shall implement a user interface to support	Ν	
	007	Manager	the interactions between testbed operators and machines		
168	TB-MAN-	Testbed	Testbed Manager shall be able to store data locally in case of	Ν	
	008	Manager	transmission failure		
169	TB-MAN-	Testbed	Testbed Manager may provide statistical data/information	Ν	
	009	Manager	about testbed operation		
170	TB-UVG-	General	Compliance of UxV to RAWFIE specification and interfaces	Ν	Specification still in draft
	001				state
171	UXV-	UxV Node	Each UxV shall have a unique Identification code.	Y	
	NOD-001				
172	UXV-	UxV Node	Each UxV node should ensure a minimum autonomy of 15-30	-	not tested in1st iteration
	NOD-002		minutes.		
173	UXV-	UxV Node	Each UxV node should ensure payload.	Y	
	NOD-003				
174	UXV-	UxV Network	Capability of taking the control of the UxVs from distance.	-	not tested in1st iteration
	NET-001	and			
		Communication			
175	UXV-	UxV Network	UxVs should be able to Synchronize their Time-References	-	not tested in1st iteration
	NET-002	and	between them.		
		Communication			
176	UXV-	UxV Network	The UxV should provide Access Point functionality.	-	not tested in1st iteration
	NET-003	and			
		Communication			
177	UXV-	UxV Network	Each UxV node shall be equipped with primary and	-	not tested in1st iteration
	NET-004	and	secondary communication means.		
		Communication			
178	UXV-	UxV Network	UxV network interface management	-	not tested in1st iteration
	NET-005	and			
		Communication			
179	UXV-	UxV Network	UxV communication interoperability with RAWFIE	Y	
	NET-006	and	(incoming)		
		Communication			
180	UXV-	UxV Network	UxV communication interoperability with RAWFIE	Y	

	NET-007	and	(outgoing)		
		Communication			
181	UXV-	UxV Network	Neighbouring UxV monitoring	-	not tested in1st iteration
	NET-008	and			
		Communication			
182	UXV-	UxV Network	Each UxV node should be able to send navigation state	-	not tested in1st iteration
	NET-009	and	feedback with at least 2 Hz frequency and maximum 1 sec		
		Communication	latency when within radio communication reach.		
183	UXV-	UxV Sensor	Each UxV node should tag location and timing capability to	-	not tested in1st iteration
	SEN-001	and	each sensor readings		
		Localisation			
184	UXV-	UxV Sensor	Each UxV node shall be able to list the available sensors	-	not tested in1st iteration
	SEN-002	and			
		Localisation			
185	UXV-	UxV Sensor	UxV location and sensor data should be made available to the	Y	
	SEN-003	and	experimenter		
		Localisation			
186	UXV-	UxV Sensor	Location sensors should be supported in each UxV unit and	Y	
	SEN-004	and	can be used remotely during testbed demonstrations.		
		Localisation			
187	UXV-	UxV Sensor	UxVs should sent a notification to the Resource Controller	Y	
	SEN-005	and	when they reach the desired location		
		Localisation			
188	UXV-	UxV On-board	UxVs shall be able to store data on board.	-	not tested in1st iteration
	STO-001	storage			
189	UXV-	UxV On-board	UxV's shall provide a management tool of the available	-	not tested in1st iteration
	STO-002	storage	storage.		
190	UXV-	UxV On-board	UxV's shall provide an authorized access to the data	-	not tested in1st iteration
	STO-003	storage	management tool.		
191	UXV-	UxV On-board	UxV's shall provide a data log.	-	not tested in1st iteration
	STO-004	storage			
192	UXV-	UxV On-board	UxV's may provide an automated syncing of servers.	-	not tested in1st iteration
	STO-005	storage			

193	UXV-	UxV On-board	Each UxV shall be able to operate autonomously.	-	not tested in1st iteration
	PRC-001	processing			
194	UXV-	UxV On-board	The UxV should provide collision avoidance mechanism.	-	not tested in1st iteration
	PRC-002	processing			
195	UXV-	UxV On-board	Capability of task planning of the UxVs nodes during run-	-	not tested in1st iteration
	PRC-003	processing	time.		
196	UXV-	UxV On-board	UxVs should be able to cooperate during the execution of an	-	not tested in1st iteration
	PRC-004	processing	experiment.		
197	UXV-	UxV On-board	Each UxV node shall keep position while waiting for new	-	not tested in1st iteration
	PRC-005	processing	instructions.		
198	UXV-	UxV	UxVs shall offer on demand resources (Network, Sensor,	-	not tested in1st iteration
	MGT-001	Management	Processing, and Controller).		
199	UXV-	UxV	UxV shall be capable to revert to a safe mode	-	not tested in1st iteration
	MGT-002	Management			
200	UXV-	UxV	UxV shall be capable to restart each component	-	not tested in1st iteration
	MGT-003	Management	independently		
201	UXV-	UxV	UxV shall be capable to monitor the health of the system	-	not tested in1st iteration
	MGT-004	Management			
202	UXV-	UxV	UxV shall be capable to enable/disable each component	-	not tested in1st iteration
	MGT-005	Management			
203	UXV-	UxV	UxV shall be capable to offer safe maintenance access for	-	not tested in1st iteration
	MGT-006	Management	manufacturers		

Table 1: Validation by requirements

4 Questionnaire for end-user validation

The main topics of the questionnaire to collect validation data and user opinions is presented here, together with the purpose of the questions and possible evaluation methods. The complete questionnaire can be found in annex A. The first results of the questionnaire are presented in section 5.2.

The current version of the questionnaire focuses on general opinion and validation of the system, to get a feedback whether we are going in the right direction. Further questions related to specific functionalities and metrics will be added in the next version.

The questionnaire currently has six main sections. The purpose of the questions is described in the following:

- About you
 - Simple questions to get an overview of the person that answers the questionnaire.
- UxVs and Testbeds
 - Questions to find out what experience the person has in general with UxVs, testbeds and the experimenting in testbeds.
 - Contains also questions on what he liked or disliked in the testbeds he knows (11, 12, 13).
- Experimenting with RAWFIE
 - Here potential end-users of the RAWFIE system should give their opinion on the possibilities of the RAWFIE system.
 - First, it asks how (14), why (15), what (16), and when (17) he would use RAWFIE. It is important to know the main interests of the users, so we could focus more on the perspectives that are really needed.
 - Then the user is asked what functionalities are of his/her interest, not of his/her interest, or missing (18-22). The purpose is again to focus on needed functionalities.
 - Questions about how experiments would be carried out (23, 24) to optimize the experimentation process.
 - And finally some questions about the value of RAWFIE: paying for RAWFIE services and cost reductions through RAWFIE (for the business model, see WP2) (25-27).
- SFA interface provision
 - o Determine the need of a fully functional SFA interface.
- Testbed integration into RAWFIE
 - o These question are to get more information on potential new testbeds,
- UxV integration into RAWFIE
 - These question are to get more information on potential new UxV providers.

5 Showcase to inform end-users

A demonstration of the online platform was presented to the end-users. The demonstration included a short presentation of RAWFIE as a project and the components that were implemented in the first development period. Then a platform overview followed.

During the platform demonstration, end users had the opportunity to get an overview of the components included in the portal like Resource Controller, Experiment Authoring Tool, Experiment Monitoring, Data Analytics and System Monitoring. An explanation of their functionality was provided to them.

5.1 Showcase scenario

Afterwards, a demonstration of a simple showcase was given to the end users. EDL parts were demonstrated and explained in order for the end users to write its own experiment, as figured in the following script:

```
Experiment
     Metadata
          Name TestExp
          Version 30.0
          Date 26/02/2016
     ~Metadata
     Requi rements
          Nodes 3
          Testbed Porto_Testbed
Location(+41.18339200, -8.70830300)
          Duration 4
        MaxDistance 100
     ~Requirements
     Declarations
          var x as Integer
     ~Declarations
    Executi on
         Executi onl nfo
             LayoutWidth 500
             LayoutHeight 500
         ~Executi onl nfo
        Node
             ID node1
             Route
                      WP<0, 98 - 60 - 0>
                      WP<1, 57 - 93 - 0>
                      WP<2, 94 - 138 - 0>
                      WP<3, 137 - 106 - 0>
             DataManagement
                      Time 14 Algorithm average(history = 10)
                      ~DataManagement
             NodeCommuni cati on
                      NIC WiFi
                       ~NodeCommunication
             DataManagement
```


~Node	Time 25 Algorithm average(history = 5) ~DataManagement
Node IDno R	ide2 ioute[WP<0, 84 - 229 - 0> WP<1, 32 - 233 - 0> WP<2 25 172 0:
] ~Node Node	WP<2, 25 - 172 - 0> WP<3, 84 - 169 - 0>
ID no R	de3 coute[WP<0, 118 - 218 - 0> WP<1, 165 - 182 - 0> WP<2, 193 - 229 - 0> WP<3, 141 - 266 - 0>
] ~Node ~Execution ~Experiment	WI < 3, 141 - 200 - 02
	Figure 1: EDL script use during showcase

Due to lack of real devices, a video with the real operation and execution of the aforementioned experiment were shown to the end users.

5.2 Results of questionnaire

A summary of the questionnaire and a table with all answers can be found in Annex B and C.

The following sub-sections summarise the results and derive some requirements out of them.

5.2.1 Conclusions

We have got 7 responses from the following types of stakeholders

- UxV manufactures or UxV service providers (industrial): 2
- Research/university/higher education: 3
 - As experimenter: 3
 - As testbed owner: 1
- Industrial users: 2
 - As experimenter: 2
 - As testbed owner: 1

All of them stated that RAWFIE would be valuable or useful for them ("good" or "great").

5.2.1.1 Testbed experiences of the users

While the UxV manufactures have never used testbeds, most of the other had some experience with testbeds. One already had even used an UxV testbed. So it can be concluded that these potential experimenters have good understanding about the purpose of RAWFIE.

On the questions what is good or bad in other existing testbeds, we only got answers from two users. The following list summarises the answers:

- Positive aspects
 - Execute experiments on demand.
 - Viewing sensor data in real-time.
 - Repeatability of experiments (via scripts).
 - Ability to experiment with multiple patterns and varying interface/protocol configurations.
 - Ability to record the experiment in detail.
 - Ability to debug experiments.
- Negative aspects
 - Not adequate customisability to the experimental configuration.
 - o OTA programming missing.

Regarding the positive aspects of other testbeds facilities: RAWFIE plans to fulfil most of the aspects. Only the debugging of experiments was not planned until now. Concerning the bad aspect about better customisability of experiments, we will have in mind that the EDL must be highly customisable. The OTA programming is already part of our user scenarios (D3.2).

5.2.1.2 Reasons for using RAWFIE in future

The users stated the following potential usage of the RAWIE platform:

- Middleware development for sensing and control of UxVs.
- Early experimentation/feasibility study.
- Can provide a platform where multiple patterns can be tested.

As regards why they would use RAWFIE, most of the participants answered "I need a variety of different UxVs from different vendors in order to test my product sufficiently". So the variety of different UxVs that RAWFIE will support it also the most valuable aspect that potential users see.

The users see the usage in all phases of the development, while most would use RAWFIE for the early prototype testing. A conclusion for RAWFIE could be that the system should be flexible enough to be helpful in all these phases.

5.2.1.3 Data and measurements

The live visualisation of experiments and sensor values was the most important data feature (5), followed by the data analysis functionality (4) and the raw sensor values (3).

As regards data format for results, the "Homogenised sensor data" was most frequently marked (5). The "Raw sensor data" (3) and "Aggregated and analysed data" (2) followed behind.

The conclusion is that the live visualisation is highly demanded and should be further developed. The data analysis functionality is also of value for the users. But, beside these, there are some requirements for raw sensor data or homogenised sensor data, that should also be provided to the experimenter.

5.2.1.4 EDL and experimenting

Regarding the flexibility of the experiment scripting, the most preferred answer was, that they liked the idea of an EDL, but access to specific UxV commands should be available somehow. Nobody wanted direct access to the UxVs (via a UxV specific scripting/programming language).

This means the EDL is the right way, when it also provides access to UxV specific commands. No effort should be spent to support UxV specific scripting/programming languages.

5.2.1.5 Business model

The cost reductions were estimated between 20% and 85% which is really a broad range. To get better value on this, it would be better to do some real life cost evaluations during the next iteration.

The question about the price per hour and UxV did not result in clear preferences. So some more detailed questions on this topic are needed too.

5.2.1.6 SFA

Only 2 of the 7 users had experiences with SFA. These two would find it good if RAWFIE would have an SFA interface.

RAWFIE will still implement an SFA interface, even if SFA needs better promotion.

5.2.1.7 UxV and Testbed integration

The answers on testbeds and UxV integration showed that there is interest of other organisation/companies to integrate their testbeds and UxV into the RAWFIE system.

Further conclusion could not be drawn from the answers.

5.2.2 New requirements

The following new requirements were identified during evaluations of the answers of the questionnaire.

- Ability to somehow debug experiment scripts.
- EDL must allow high customisability to the experimental configuration.
- EDL must allow access to specific UxV commands somehow.
- Download of raw sensor data and/or homogenised sensor data of experiments.
- The RAWFIE system should be flexible enough to be used during all product development phases.

5.2.3 Improvements for next questionnaire

The questionnaire shows some shortcomings – these need to be addressed for the next iteration.

- Try to formulate more comprehensive questions. E.g., the question "Which functionalities of RAWFIE are most valuable for you?" and "Which functionalities of RAWFIE are of no interest to you?", 3 of 7 marked same items on both questions.
- More detail question to validate the function of the RAWFIE system

6 Performance and technical evaluation

6.1 Benchmarking of the RAWFIE Message Broker

In this section we present the outcomes of a series of performance tests, focused on the measurements of the End-to-end latency for messages exchanged between Kafka producers and consumers. A high level analysis of the results is provided, while the actual evaluation of the observed metrics (End-to-end latency) against the expected success criteria will be provided in subsequent versions of this document (D6.4), where the detailed evaluation of all quantitative metrics defined in D4.3 will be provided. The reason being that the accurate definition of the success criteria, like for example the maximum End-to-end latency admitted for a safe control of the UxVs, is part of an already planned, incoming activity, which will involve the participation of Testbeds and UxVs owners, both partners belonging to the consortium and new consortium partners who are joining the consortium after the conclusion of the 1st Open Call.

Aforementioned tests for the RTT and the End-to-end latency metrics, whose setup and results are presented in the following, are carried out in 2 different environments. A local, controlled one, where simulated RAWFIE software components (messages producers and consumers), running on general purpose laptops, publish and consume messages at high rates. A second setup involves actual RAWFIE software components, the Resource Controller and the UxV RAWFIE Adaptor running on the UxV nodes, acting as producers and consumers of the messages.

6.2 Local environment with simulated components

<u>Hardware</u>

- Forwarder (Consumer+Producer)
 - o General purpose laptop
 - o CPU:Intel i5 5200U
 - o RAM:8gb DDR3L
 - o HDD:1TB 5400rpm
- Forwarder (Broker)
 - Server for hostng kafka broker
 - o CPU:Intel i5 5200U
 - o RAM:8gb DDR3L
 - o HDD:1TB 5400rpm
- Server/Zookeeper/Producer+Consumer
 - Virtual PC in rack server
 - CPU:Intel Xeon E5-2640 (assigned 4 cores)
 - o RAM:8GB DDR3
 - HDD:60GB RAID 5

Software Components & Configuration

- Producers software
 - o Simulated Apache Kafka producer
- Consumer software
 - o Simulated Apache Kafka consumer
- Number of Apache Kafka Servers (e.g. cluster or a single server):1

Specific tuning for the tests

- type of messages: Avro
- number of producers:1
- number of consumers:1
- Kafka topics:1

Tests description and results

The latency was measured by synchronising the time of the consumer and the producer with an NTP server (2.gr.pool.ntp.org), and then computing the time from when the packet was published, to when it was received, in milliseconds.

The following figures shows the latency measures in milliseconds, with the varying number of packets sent from the producer to the consumer.

Number of messages: 10.000

Number of Messages: 100.000

Number of Messages: 100.0000

Figure 4: End-to-end latency with the number of messages varying from 1 to 1,000,000

6.3 Test environment with actual RAWFIE components

Hardware

MST UxVs are equipped with one embedded computer with the following specifications:

- CPU: AMD[®] Geode[™] LX 800 @ 500 MHz
- RAM: 1024 MB DDR1 @ 400 MHz
- Disk: Compact Flash 32 GB
- Network: 802.3u, 802.11n @ 2.4 GHz

The MST RAWFIE software runs on server with the following specifications:

- CPU: Intel® Core™ i7-4710HQ @ 2.50GHz
- RAM: 8192 MB DDR3 @ 1.6 GHz
- SSD: Samsung SSD 840 EVO 250 GB
- Network: 802.3ab

Test environment setup

The temporary testing infrastructure of MST, whose network topology is depicted in , comprised the following components:

- Three Light Autonomous Underwater Vehicles (LAUVs) equipped with Conductivity, Temperature, Rhodamine Dye, Chlorophyll, Phycocyanin, Phycoerythrin, and Fluorescein sensors; active dual frequency sonar and high definition camera. Communication with the Manta gateway is performed using a 2.4 GHz 802.11n radio link and 25 kHz acoustic modem. These assets are represented as "AUV 0", "AUV 1", and "AUV 2" in the network topology diagram.
- One Manta gateway with WHOI Micromodem Acoustic Modem and one 2.4 GHz 802.11n radio with an omnidirectional antenna. This asset is represented as "GW" in the network topology diagram.

• One 2.4 GHz 802.11n radio with builtin 90° sector antenna, connected to the MST network infrastructure and to the Internet through a firewall. These assets are represented in the network topology diagram as "LAN-GW", "LAN", and "Firewall" respectively.

Figure 5: Schematic test setup for RAWFIE component tests

6.3.1 Round Trip Time results

Two different stress tests performed:

- 1. Sync Test: publishes/receives 1000 records.
- 2. Burst Test: publishes all records / receives all records.

The first one, was performed by synchronising the publisher with the consumer, i.e. a new message is published right after the "answer" for the first one is received. In the second configuration, messages are sent in burst, i.e. without waiting the feedback. In all cases,

Below is the summary of the results, in textual form, of the 2 different test types.

Sync Test (TX/RX) | 1000 records

- Subscribed Topics : 1
 Elapsed Time : 113226 ms
 Schema Initialization : 8 ms
- Kafka Producer Initialization : 3 ms

U		
•	Kafka Consumer Initialization	: 5266 ms
•	Kafka Consumer Shutdown	: 0 ms
•	RX – Records	: 1000
•	RTT – Minimum	: 102.00 ms
•	RTT – Maximum	: 951.00 ms
٠	RTT – Mean	: 113.10 ms
•	RTT – SD	: 38.12 ms
•	TX – Records	: 1000
•	TX – Duration	: 0 ms
•	TX – Minimum	: 0.00 ms
•	TX – Maximum	: 641.00 ms
•	TX – Mean	: 0.69 ms
•	TX – SD	: 20.27 ms

Burst Test (TX/RX) | 1000 records

•	Subscribed Topics	:1
•	Elapsed Time	: 21662 ms
•	Schema Initialization	: 11 ms
•	Kafka Producer Initialization	: 3 ms
•	Kafka Consumer Initialization	: 5075 ms
•	Kafka Consumer Shutdown	: 611 ms
•	RX – Records	: 1000
•	RTT – Minimum	: 223.00 ms
•	RTT – Maximum	: 20976.00 ms
•	RTT – Mean	: 10634.81 ms
•	RTT – SD	: 6020.21 ms
•	TX – Records	: 1000
•	TX – Duration	: 686 ms
•	TX – Minimum	: 0.00 ms
•	TX – Maximum	: 642.00 ms
•	TX – Mean	: 0.68 ms
•	TX - SD	: 20.30 ms

6.3.2 End-to-end latency results

The latency was measured by using timestamps between the consumer in the UAVs and the consumer inside the Kafka server. The two consumers were synchronized by using a GPS NTP server by using GPS time definition. The difference between the two consumers were computed and depicted in the following graph. The Schema used for the execution of the tests is described in the Annex D

Figure 6: End-to-end latency in the second environment

7 Roadmap for the Platform Validation

The following roadmap is planned to perform the validation of the system until M30 (in the first table) and M40 (in the second table)

Year	20	16					20	17				
Month	J	A	S	0	N	D	J	F	Μ	A	Μ	J
Project Month	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0
Development and implementation of RAWFIE components (2 nd iteration)												
Extend questionnaires												
Platform ready for end-user tests												
Perform validation scenarios (observation of participants, recording of validation metrics)												
Do questionnaires or interviews with the users												
Evaluate questionnaires and interviews												
Perform evaluation of quantitative metrics against												

success criteria						
Prepare D6.4						

Year	2017 20			2018						
Month	J	Α	S	0	Ν	D	J	F	М	Α
Project Month	3 1	3 2	3 3	3 4	3 5	3 6	3 7	3 8	3 9	4 0
Development and implementation of RAWFIE components (3 rd iteration)										
Extend questionnaires										
Platform ready for end-user test										
Perform validation scenarios (observation of participants, recording of validation metrics)										
Do questionnaires or interviews with the users										
Evaluate questionnaires and interviews										
Perform evaluation of quantitative metrics against success criteria										
Prepare D6.6										

8 Conclusion and Outlook

The main drawback of the current state is, that the system is not ready for real end-user validation and comprehensive, quantitative performance tests. A showcase was performed where the system was shown to end-users. Based on this a questionnaire was filled out by the end-users where we get fist responses to improve the RAWFIE system, which showed that RAWFIE is on the right way. Also some new requirements where extracted from the answers of the questionnaire.

Furthermore, some performance evaluation has been made, measuring the end-to-end latency and RTT when using the Kafka message bus for communication. The results show that Kafka provides high performance and therefore may fit to the performance needs of RAWFIE, that will be further evaluated when the success criteria will be defined together with the end users and especially Testbeds/UxVs owners.

For the next version of the "RAWFIE Platform Validation" (D6.4), the platform will be ready for real end-user tests, where also the validation scenarios from D4.3/D4.6 will be executed and metrics will be evaluated.

A End-user questionnaire

About you

Annex

- 1. How old are you?
 - younger than 20
 - 20 to 29
 - 30 to 39
 - 40 to 49
 - 50 to 59
 - 60 and older
- 2. Which kind of organisation/company are you from?
 - Free text
- 3. What is your professional role?
 - Free text
- 4. What are your activities/responsibilities at your organisation/company?
 - Free text
- 5. Which roles could be played by your company organisation/company (if any)?
 - Experimenter
 - Tesbed owner
 - UxV manufacturer
 - Regulation body

UxVs and Testbeds

- 6. In which kinds of UxVs are you interested?
 - UAV (unmanned aerial vehicle aircraft, commonly known as a drone)
 - UGV (unmanned ground vehicle vehicle that operates while in contact with the ground)
 - USV (Unmanned surface vehicles vehicles that operate on the surface of the water)
 - UUV (unmanned underwater vehicle vehicles that are able to operate underwater)
 - Other: Free text
- 7. Which kinds of UxVs have you worked with?
 - UAV (unmanned aerial vehicle aircraft, commonly known as a drone)
 - UGV (unmanned ground vehicle vehicle that operates while in contact with the ground)
 - USV (Unmanned surface vehicles vehicles that operate on the surface of the water)
 - UUV (unmanned underwater vehicle vehicles that are able to operate underwater)

- Other: Free text
- 8. Have you ever made experiments with UxVs?
 - Yes
 - No
- 9. Have you ever used testbeds in general (not only UxV testbeds)?
 - Yes
 - No
- 10. Have you ever used UxV testbeds?
 - Yes
 - No
- 11. Which testbeds facilities did you use?
 - Free text
- 12. Which functionalities/procedures of the used facilities according to your opinion are useful?
 - Free text
- 13. Which functionalities/procedures of the used facilities according to your opinion need improvement?
 - Free text

Experimenting with RAWFIE

For those that would like to execute experiments with RAWFIE

- 14. How would you incorporate RAWFIE into your projects?
 - Free text
- 15. Why would you use the RAWFIE platform?
 - I only need to perform some tests and don't want to buy UXVs for these few.
 - It is necessary to have many UXVs involved in one tests, but I only have too little of them.
 - I need a variety of different UXVs from different vendors in order to test my product sufficiently.
 - Other: Free text
- 16. Which kind of information are most relevant of an experiment?
 - Live visualisation of the experiments including sensor values
 - Performing some standard data analytic algorithms on the gathered sensor data Raw sensor data
 - Other: Free text
- 17. In which phases during the product life cycle would you use RAWFIE?

000 000 000

- Case study
- Feasibility study
- Early prototype testing
- Late prototype testing
- Final product testing
- Other: Free text

18. Which functionalities of RAWFIE are most valuable for you?

- EDL script editor
- EDL visual/graphical editor
- Resources Explorer
- Booking of resources
- Experiment Monitoring and Visualisation
- UxV remote control (live)
- System Monitoring
- Data Analytics
- Other: Free text
- 19. Which functionalities of RAWFIE are not of interest for you?
 - EDL script editor
 - EDL visual/graphical editor
 - Resources Explorer
 - Booking of resources
 - Experiment Monitoring and Visualisation
 - UxV remote control (live)
 - System Monitoring
 - Data Analytics
 - Other: Free text

20. Do you like the idea of a specialized EDL (experiment description language)?

- Yes, I don't want to worry about UxV specific command.
- Yes, but access to specific UxV commands should be possible somehow.
- No, I want direct access to the specific UxV (UxV specific scripting/programming language).

21. Which kind of result formats would you like to have?

- Raw sensor data (UxV/sensor specific)
- Homogenized sensor data (homogenized format for RAWFIE)
- Aggregated and analysed data
- Just if experiment was successful or not
- Other: Free text

22. Which additional functionalities or information would you like to have provided by RAWFIE?

• Free text

- 23. How would you perform most the tests?
 - Large test series (prepare many tests that may run several days and evaluate them afterwards)
 - Short test interactions (prepare only a few tests, run and evaluate them; afterwards the next cycle begins)
 - Both equally
 - Other: Free text
- 24. Which kinds of experiments would you perform with RAWFIE?
 - Free text
- 25. How valuable/useful would RAWFIE be for you?
 - Great
 - Good
 - Average
 - Low
 - Valueless
- 26. How much would you pay per hour and UxV?
 - Free text
- 27. Please tried to estimate of the cost reduction (person months) by using RAWFIE for your experiments instead of build your experimentation platform yourself (in %)
 - Free text

SFA interface

Slice Federation Architecture interface

- 28. Have you ever used a testbed via a SFA interface?
 - What is SFA?
 - Yes. It's really useful.
 - Yes. But I like a more specialised interface.
 - No.
- 29. How valuable is an SFA interface in general for you?
 - Great
 - Good
 - Average
 - Low
 - Valueless
- 30. How valuable would an SFA interface for RAWFIE be for you
 - Great

- Good
- Average
- Low
- Valueless

Testbed integration into RAWFIE

For those that would like to integrate their testbeds into RAWFIE

- 31. Which type of testbed can you provide
 - Air
 - Ground, outdoor
 - Ground, indoor
 - Maritime, water outdoor
 - Water indoor
 - Other: Free text
- 32. Are there any constrains that must be obeyed in your testbed (e.g.: availability, hours of operation, number of UxV simultaneously operated)?
 - Free text
- 33. What do you expect from an integration into the RAWFIE system?
 - Free text
- 34. How many UxVs can your testbed host (approximately)?
 - Free text
- UxV integration into RAWFIE

For those that would like to integrate their UxVs into RAWFIE

- 35. Which kinds of UxVs can you provide?
 - UAV (unmanned aerial vehicle aircraft, commonly known as a drone)
 - UGV (unmanned ground vehicle vehicle that operates while in contact with the ground)
 - USV (Unmanned surface vehicles vehicles that operate on the surface of the water)
 - UUV (unmanned underwater vehicle vehicles that are able to operate underwater)
 - Other: Free text
- 36. Are there any constrains that must be obeyed with your UxVs?
 - Free text
- 37. What do you expect from an integration into the RAWFIE system?
 - Free text
- 38. How many UxVs could you provide (on how many testbeds)?

• Free text

Final comments

- 39. Any additional comments that you have about the RAWFIE system?
 - Free text

B Questionnaire summary

The following pages contain the automatic generated summary.

About you

How old are you?

younger than 20	0	0 %
20 to 29	0	0 %
30 to 39	3	42.9 %
40 to 49	3	42.9 %
50 to 59	1	14.3 %
60 and older	0	0 %

Which kind of organisation/company are you from?

UAS service providers University of Piraeus Research / Higher Education Electronics University of Applied Sciences IoT, RnD department, AGT International UxV Addition & Customization

What is your professional role?

Professor business development Faculty Head of RD Scenior Data Scienst CEO

What are your activities/responsibilities at your organisation/company?

Research and Teaching R&D manager RD Projects/Product Development Teaching-Research Researching and supervising application of data analytics solutions, using Internet of Things data. Helping evaluating which sensors and network configurations best fit each application needs. CEO

UxVs and Testbeds

In which kinds of UxVs are you interested?

UAV (unmanned aerial vehicle - aircraft, commonly known as a drone)	6	100 %
UGV (unmanned ground vehicle - vehicle that operates while in contact with the ground)	6	100 %
USV (Unmanned surface vehicles - vehicles that operate on the surface of the water)	5	83.3 %
UUV (unmanned underwater vehicle - vehicles that are able to operate underwater)	4	66.7 %

Which kinds of UxVs have you worked with?

3 85.7 %	6	UAV (unmanned aerial vehicle - aircraft, commonly known as a drone)
5 71.4 %	5	UGV (unmanned ground vehicle - vehicle that operates while in contact with the ground)
28.6 %	2	USV (Unmanned surface vehicles - vehicles that operate on the surface of the water)
0 %	0	UUV (unmanned underwater vehicle - vehicles that are able to operate underwater)

Have you ever made experiments with UxVs?

Yes	2	28.6 %
No	5	71.4 %

Have you ever used testbeds in general (not only UxV testbeds)?

Yes	4	57.1 %
No	3	42.9 %

Have you ever used UxV testbeds?

Yes	1	14.3	%
No	6	85.7	%

Which testbeds facilities did you use?

- UUV experiment
- Testbeds for our products
- MSP430 MCU DEBUGGER

Mobile Emulab, PLANETLAB, EMULAB

Which functionalities/procedures of the used facilities according to your opinion are useful?

the bility to start/stop experiments on-demand, and viweing the sensor reading timeseries in real-time ENERGY TRACER

Repeat-ability of experiments with the use of a script, ability to experiment with multiple mobile patterns to observe interactions, ability to record the experiment in detail, easiness to configure and debug experiments, ability to experiment with varying interface/protocol configurations

Which functionalities/procedures of the used facilities according to your opinion need

improvement?

add more customisability to the experimental configuration (needs to be supported by the platform too though)

OTA programming

Experimenting with RAWFIE

How would you incorporate RAWFIE into your projects?

YES

We can discuss it

MIDDLEWARE DEVELOPMENT FOR SENSING AND CONTROL OF UAVs/UGVs

As an easy way for early experimentation / feasibility study. The data acquired could prove valuable to develop and debug planned analytics. It offers a platform where multiple patterns can be tested and the results can help debug and develop the analytics that require data driven approaches such as anomaly detection.

Why would you use the RAWFIE platform?

I only need to perform some tests and don't want to buy UXVs for these few. **2** 33.3 % necessary to have many UXVs involved in one tests, but I only have too little of them. **2** 33.3 %

It is necessary to have many UXVs involved in one tests, but I only have too little of them. **2** 33.3 % I need a variety of different UXVs from different vendors in order to test my product sufficiently. **6** 100 %

Live visualisation of the experiments including sensor values 5 83.3 %

Performing some standard data analytic algorithms on the gathered sensor data 4 66.7 %

Raw sensor data 3 50 %

In which phases during the product life cycle would you use RAWFIE?

Which functionalities of RAWFIE are most valuable for you?

EDL script editor	3	50 %
EDL visual/graphical editor	2	33.3 %
Resources Explorer	1	16.7 %
Booking of resources	1	16.7 %
Experiment Monitoring and Visualisation	5	83.3 %
UxV remote control (live)	5	83.3 %
System Monitoring	5	83.3 %
Data Analytics	3	50 %

Data Analytics 2 50 %

Do you like the idea of a specialized EDL (experiment description language)?

- Yes, I don't want to worry about UxV specific command. 1 20 %
- Yes, but access to specific UxV commands should be possible somehow. 4 80 %
- No, I want direct access to the specific UxV (UxV specific scripting/programming language) 0 0 %

Which kind of result formats would you like to have?

Just if experiment was successful or not 0 0 %

Which additional functionalities or information would you like to have provided by RAWFIE?

Location data

How would you perform most the tests?

Large test series (prepare many tests that may run several days and evaluate them afterwards) 0 0 %

- Short test interactions (prepare only a few tests, run and evaluate them; afterwards the next cycle begins) 3 60 %
 - Both equally 2 40 %

Which kinds of experiments would you perform with RAWFIE?

real-time sensing and control using Delay Tolerant Networks

How valuable/useful would RAWFIE be for you?

How much would you pay per hour and UxV?

somethiing equivalent to what Cloud Computing platforms charge for (e.g., \$1 per hour, depending on functionality provided)

100

[Disclaimer: I would not be the one to address / decide the cost questions, only advise, and it would fall to the specific product owner to decide based on his budget, his goals, the alternatives, and most importatly and his urgency] Depending on the scale of experiments, for deciding if the testbed should be used it is possible that a trial of the testbed of ~<1K would be approved, then the results internaly presented and benefits evaluated, before proceeding to more investment. I am not sure how this would be epected to be mapped to hours/UxVs

Please tried to estimate of the cost reduction (person months) by using RAWFIE for your experiments instead of build your experimentation platform yourself (in %)

30
70%
40%
85%
Using RAWFIE would significantly decrease entrance and early phases costs. As often my company
would try different approaches before deciding to move to later stages. Reduction in cost would be
significant, potentially up to 20% to 50%. However, in my mind the most important aspect is not the

would try different approaches before deciding to move to later stages. Reduction in cost would be significant, potentially up to 20% to 50%. However, in my mind the most important aspect is not the reducton in cost, but the reduction in time required to arrive to a first feasibility test. Depending on the urgency of a use case, time to market gains or even the ability to meet strict deadlnes might be more important.might

SFA interface

Have you ever used a testbed via a SFA interface?

What is SFA?	1	14.3 %
Yes. It's really useful.	1	14.3 %
Yes. But I like a more specialised interface.	1	14.3 %
No.	4	57.1 %

How valuable is an SFA interface in general for you?

Great	0	0 %
Good	2	33.3 %
Average	4	66.7 %
Low	0	0 %
Valueless	0	0 %

How valuable would an SFA interface for RAWFIE be for you

Great	0	0 %
Good	3	50 %
Average	3	50 %
Low	0	0 %
Valueless	0	0 %

Test bed integration

Which type of test bed can you provide

Are there any constrains that must be obeyed in your testbed (e.g.: availability, hours of operation, number of UxV simultaneously operated)?

number of UxVs operated

no

What do you expect from an integration into the RAWFIE system?

access to a variety of diverse UxV platforms

dissemination of code/experience in developing UAVs/UGVs

5 2

UxV integration

Which kinds of UxVs can you provide?

100 %	3	UAV (unmanned aerial vehicle - aircraft, commonly known as a drone)
66.7 %	2	UGV (unmanned ground vehicle - vehicle that operates while in contact with the ground)
33.3 %	1	USV (Unmanned surface vehicles - vehicles that operate on the surface of the water)
0 %	0	UUV (unmanned underwater vehicle - vehicles that are able to operate underwater)

Are there any constrains that must be obeyed with your UxVs?

NO

no

MavLink compatible Communication Protocol

What do you expect from an integration into the RAWFIE system?

dissemination of SW/HW design

Feedback for UAV evolution, New test cases,

How many UxVs could you provide (on how many testbeds)?

10 two

12

Final comments

Any additional comments that you have about the RAWFIE system?

C Questionnaire single results

In the following pages the raw answers of the questionnaire are listed as table.

Timestamp	How old are you?	Which kind of organisation/co mpany are you from?	What is your professional role?	What are your activities/responsibilities at your organisation/company ?	Which roles could be played by your company organisation/co mpany (if any)?	In which kinds of /UxVs are you interested?	Which kinds of UxVs have you worked with?	Have you ever made experiments with UxVs?	Have you ever used testbeds in general (not only UxV testbeds)?	Have you ever used UxV testbeds?	Which testbeds facilities did you use?
25.07.2016 15:02:46	40 to 49	UAS service providers	business development	R&D manager	UxV manufacturer	UAV, UGV,USV, UUV	UAV, UGV,USV	Yes	No	No	
27.07.2016 16:24:33	40 to 49	UxV Addition & Customization	CEO	CEO	UxV manufacturer		UAV, UGV,USV	No	No	No	
25.07.2016 18:04:21	40 to 49	University of Piraeus	Faculty	Research and Teaching	Experimenter	UAV, UGV,USV, UUV	UAV	No	No	No	
26.07.2016 13:59:22	30 to 39	Research / Higher Education	Professor	Research and Teaching	Experimenter	UAV, UGV,USV, UUV	UAV	No	Yes	No	UUV experiment
26.07.2016 22:10:35	50 to 59	University of Applied Sciences	Professor	Teaching-Research	Experimenter, Tesbed owner	UAV, UGV	UAV, UGV	Yes	Yes	No	MSP430 MCU DEBUGGER
26.07.2016 19:14:19	30 to 39	Electronics	Head of RD	RD Projects/Product Development	Experimenter	UAV, UGV,USV, UUV	UGV	No	Yes	Yes	Testbeds for our products
27.07.2016 12:43:23	30 to 39	loT, RnD department, AGT International	Scenior Data Scienst	Researching and supervising application of data analytics solutions, using Internet of Things data. Helping evaluating which sensors and network configurations best fit each application needs.	Experimenter, Tesbed owner	UAV, UGV,USV	UAV, UGV	No	Yes	No	Mobile Emulab, PLANETLAB, EMULAB

Which functionalities/procedures of the used facilities according to your opinion are useful?	Which functionalities/procedures of the used facilities according to your opinion need improvement?	How would you incorporate RAWFIE into your projects?	Why would you use the RAWFIE platform?	Which kind of information are most relevant of an experiment?
		YES	# I need a variety of different UXVs from different vendors in order to test my product sufficiently.	# Live visualisation of the experiments including sensor values # Performing some standard data analytic algorithms on the gathered sensor data # Raw sensor data
			 # I only need to perform some tests and don't want to buy UXVs for these few. # It is necessary to have many UXVs involved in one tests, but I only have too little of them. # I need a variety of different UXVs from different vendors in order to test my product sufficiently. 	# Live visualisation of the experiments including sensor values # Performing some standard data analytic algorithms on the gathered sensor data # Raw sensor data
the ability to start/stop experiments on-demand, and viweing the sensor reading timeseries in real-time	add more customisability to the experimental configuration (needs to be supported by the platform too though)		# I only need to perform some tests and don't want to buy UXVs for these few.# I need a variety of different UXVs from different vendors in order to test my product sufficiently.	# Performing some standard data analytic algorithms on the gathered sensor data
ENERGY TRACER	OTA programming	MIDDLEWARE DEVELOPMENT FOR SENSING AND CONTROL OF UAVs/UGVs	# I need a variety of different UXVs from different vendors in order to test my product sufficiently.	# Live visualisation of the experiments including sensor values
		We can discuss it	# I need a variety of different UXVs from different vendors in order to test my product sufficiently.	# Live visualisation of the experiments including sensor values # Performing some standard data analytic algorithms on the gathered sensor data
Repeat-ability of experiments with the use of a script, ability to experiment with multiple mobile patterns to observe interactions, ability to record the experiment in detail, easiness to configure and debug experiments, ability to experiment with varying interface/protocol configurations	3	As an easy way for early experimentation / feasibility study. The data acquired could prove valuable to develop and debug planned analytics. It offers a platform where multiple patterns can be tested and the results can help debug and develop the analytics that require data driven approaches such as anomaly detection.	 # It is necessary to have many UXVs involved in one tests, but I only have too little of them. # I need a variety of different UXVs from different vendors in order to test my product sufficiently. 	# Live visualisation of the experiments including sensor values # Raw sensor data

In which phases during the product life cycle would you use RAWFIE?	Which functionalities of RAWFIE are most valuable for you?	Which functionalities of RAWFIE are not of interest for you?	Do you like the idea of a specialized EDL (experiment description language)?	Which kind of result formats would you like to have?	Which additional functionalities or information would you like to have provided by RAWFIE?	How would you perform most the tests?
# Early prototpye testing # Late prototype testing # Final product testing	# Experiment Monitoring and Visualisation # UxV remote control (live) # System Monitoring # Data Analytics	# EDL script editor # EDL visual/graphical editor # Resources Explorer # Booking of resources	Yes, but access to specific UxV commands should be possible somehow.	# Aggregated and analysed data		Short test interactions (prepare only a few tests, run and evaluate them; afterwards the next cycle begins)
# Case study # Feasibility study # Early prototpye testing # Late prototype testing # Final product testing	# EDL script editor # EDL visual/graphical editor # Resources Explorer # Booking of resources # Experiment Monitoring and Visualisation # UxV remote control (live) # System Monitoring # Data Analytics	# EDL script editor # EDL visual/graphical editor # Resources Explorer # Booking of resources # Experiment Monitoring and Visualisation # UxV remote control (live) # System Monitoring # Data Analytics		# Raw sensor data (UxV/sensor specific) # Homogenized sensor data (homogenized format for RAWFIE)		
# Case study # Early prototpye testing	# Experiment Monitoring and Visualisation # UxV remote control (live) # System Monitoring		Yes, but access to specific UxV commands should be possible somehow.	# Homogenized sensor data (homogenized format for RAWFIE)		Both equally
# Feasibility study	# UxV remote control (live)	# UxV remote control (live)	Yes, but access to specific UxV commands should be possible somehow.	# Raw sensor data (UxV/sensor specific) # Homogenized sensor data (homogenized format for RAWFIE)	Location data	Short test interactions (prepare only a few tests, run and evaluate them; afterwards the next cycle begins)
# Case study # Early prototpye testing	# EDL script editor # Experiment Monitoring and Visualisation # System Monitoring # Data Analytics		Yes, but access to specific UxV commands should be possible somehow.	# Homogenized sensor data (homogenized format for RAWFIE), Aggregated and analysed data		Short test interactions (prepare only a few tests, run and evaluate them; afterwards the next cycle begins)
# Case study # Feasibility study # Early prototpye testing	# EDL script editor # EDL visual/graphical editor # Experiment Monitoring and Visualisation # UxV remote control (live) # System Monitoring	# EDL script editor # EDL visual/graphical editor # Resources Explorer # Booking of resources # Experiment Monitoring and Visualisation # UxV remote control (live) # System Monitoring # Data Analytics	Yes, I don't want to worry about Ux∨ specific command.	# Raw sensor data (UxV/sensor specific) # Homogenized sensor data (homogenized format for RAWFIE)		Both equally

Which kinds of experiments would you perform with RAWFIE?	How valuable/useful would RAWFIE be for you?	How much would you pay per hour and UxV?	Please tried to estimate of the cost reduction (person months) by using RAWFIE for your experiments instead of build your experimentation platform yourself (in %)	Have you ever used a testbed via a SFA interface?	How valuable is an SFA interface in general for you?
	Great		30	No.	Average
	Good			Yes. It's really useful.	Average
	Good			What is SFA?	
	Great	somethiing equivalent to what Cloud Computing platforms charge for (e.g., \$1 per hour, depending on functionality provided)	70%	No.	Average
real-time sensing and control using Delay Tolerant Networks	Great	100	85%	No.	Average
	Great		40%	No.	Good
	Good	[Disclaimer: I would not be the one to address / decide the cost questions, only advise, and it would fall to the specific product owner to decide based on his budget, his goals, the alternatives, and most importatly and his urgency] Depending on the scale of experiments, for deciding if the testbed should be used it is possible that a trial of the testbed of ~<1K would be approved, then the results internaly presented and benefits evaluated, before proceeding to more investment. I am not sure how this would be epected to be mapped to hours/UxVs	Using RAWFIE would significantly decrease entrance and early phases costs. As often my company would try different approaches before deciding to move to later stages. Reduction in cost would be significant, potentially up to 20% to 50%. However, in my mind the most important aspect is not the reducton in cost, but the reduction in time required to arrive to a first feasibility test. Depending on the urgency of a use case, time to market gains or even the ability to meet strict deadlnes might be more important.might	Yes. But I like a more specialised interface.	Good

How valuable would an SFA interface for RAWFIE be for you	Which type of test bed can you provide	Are there any constrains that must be obeyed in your testbed (e.g.: availability, hours of operation, number of UxV simultaneously operated)?	What do you expect from an integration into the RAWFIE system?	How many UxVs can your testbed host (approximately)?	Which kinds of UxVs can you provide?	Are there any constrains that must be obeyed with your UxVs?	What do you expect from an integration into the RAWFIE system?2	How many UxVs could you provide (on how many testbeds)?	Any additional comments that you have about the RAWFIE system?
Average	Air, Ground, outdoor, Ground, indoor, Maritime, water outdoor				UAV, UGV,USV	NO		10	
Good					UAV	MavLink compatible Communication Protocol	Feedback for UAV evolution, New test cases,	12	
	Air, Ground, outdoor								
Average	Ground, indoor	number of UxVs operated	access to a variety of diverse UxV platforms	5					
Average	Air, Ground, outdoor	no	dissemination of code/experience in developing UAVs/UGVs	2	UAV, UGV	no	dissemination of SW/HW design	two	no
Good									
Good									

D Avro Shema Messages

Goto.avsc

```
{
   "namespace": "eu. rawfi e. uxv. commands",
   "name": "Goto",
"type": "record",
"doc": "Command a system to move to a given location at a given speed",
   "fi el ds": [
       Ł
          "name": "header",
"type": "eu. rawfi e. uxv. Header"
      },
{
"name": "location",
"type": "eu.rawfie.uxv.Location"
         "name": "speed",
"type": [
"float",
"null"
          ],
"unit": "m/s"
       },
       Ł
          "name": "timeout",
"type": "float",
"unit": "s"
       }
   ]
}
Header.avsc
{
  "namespace": "eu.rawfie.uxv",
"name": "Header",
"type": "record",
"fields": [
      {
    "name": "sourceSystem",
    "type": "string",
    "doc": "Canonical name of the originating system"
}
       },
{
          "name": "sourceModule",
"type": "string",
"doc": "Canonical name of the module within a given system that
originated the message"
       },
{
          "name": "time",
"type": "long",
"unit": "ms",
"doc": "Time elapsed since the Unix epoch"
       }
   ]
}
```


E Abbreviations

Table 2 gives the abbreviations used across the RAWFIE projects in the documents and deliverables.

Abbreviation	Meaning
3D	three-dimensional space
ACL	Access Control List
AGL	Above Ground Level
AHRS	Attitude and Heading Reference System
AJAX	Asynchronous JavaScript and XML
AM	Aggregate Manager (of SFA)
AP	Access Point
API	Application Programming Interface
API	Application programming interface
AT	Aerial Testbed
AUV	Autonomous underwater vehicle
B-VLOS	Beyond Visual Line Of Sight
CA	Certification Authority
CAA	Civil Aviation Authority
CAO	Cognitive Adaptive Optimization
CBNR	Chemical Biological Nuclear Radiological
CEP	Circular Error Probability
CPU	Central Processing Unit
CSR	Certificate Signing Request
DETEC	Department of the Environment, Transport, Energy and Communication
DGCA	Directorate General of Civil Aviation
DoA	Description of Actions
EASA	European Aviation Safety Agency
EC	Experiment Controller
ECC	Error Correction Code
ECV	EDL Compiler & Validator
EDL	Experiment Description Language
EDL	Experiment Description Language
EER	Experiment and EDL Repository
EU	European Union
E-VLOS	Extended Visual Line Of Sight
EVS	Experiment Validation Service
FIRE	Future Internet Research & Experimentation
FOCA	Federal Office of Civil Aviation
FPS	Frames Per Second
FPV	First Person View
GAA	German Aviation Act
GIS	Geographic Information System
GNSS	Global Navigation Satellite System
GPIO	General Purpose Input/Output
GPS	Global Positioning System
GUI	Graphical user interface

HD	High Definition
HTTP	Hypertext Transfer Protocol
HW	Hardware
IAA	Irish Aviation Authority
IaaS	Infrastructure as a Service
IDE	Integrated Development Environment
IDE	integrated development environment
IFR	Instrument Flight Rules
IP	Internet Protocol
ISO	International Standards Organization
JDBC	Java Database Connectivity
JSON	JavaScript Object Notation
KPI	Key Performance Indicator
KPI	Key Performance Indicator
LBL	Long Baseline
LDAP	Lightweight Directory Access Protocol
LS	Launching Service
MEMS	MicroElectroMechanical System
MM	Monitoring Manager
MSO	Multi Swarm Optimization
MT	Maritime Testbed
MOM	Message Oriented Middleware
MVC	Model View Controller
NAT	Network Address Translation
NC	Network Controller
NF	Non Functional
ODBC	Open Database Connectivity
OEDL	OMF EDL
OMF	cOntrol and Management Framework
OMF	Orbit Management Framework
OML	ORBIT Measurement Library
OS	Operating System
OTA	Over The Air
P2P	Point to Point
PSO	Particle Swarm Optimization
PTZ	Pan Tilt Zoom
RC	Resource Controller
RC	Resource Controller
RE	Requirement Engineering
REST	Representational state transfer
RIA	Research and Innovation Action
ROS	Robot Operating System
ROV	Remotely Operated Vehicle
RPA	Remotely Piloted Aircraft
RPAS	Remotely Piloted Aircraft System
RPS	Remotely Piloted Station
RSpec	SFA Resource Specification
SaaS	Software as a Service
SAML	Security Assertion Markup Language

SFA	Slice-based Federation Architecture
SOA	Service Oriented Architecture
SOAP	Simple Object Access Protocol
SQL	Simple Query Language
SSO	Single-Sign-On
SVN	Apache Subversion
ТМ	Testbed Manager
TMS	Testbed Manager Suite
ТР	Testbed Proxy
UAV	Unmanned Aerial Vehicle
UGV	Unmanned Ground Vehicle
UI	User Interface
UML	Unified Modelling Language
USV	Unmanned Surface Vehicle
UUV	Unmanned Underwater Vehicle
UxV	Unmanned aerial/ground/surface/underwater Vehicle
VE	Visualization Engine
VT	Vehicular Testbed
VT	Visualization Tool
WCS	Web Coverage Service
WFS	Web Feature Service
WMS	Web Map Service
WPS	Web Processing Service
WSDL	Web Services Description Language
XMPP	Extensible Messaging and Presence Protocol

 Table 2: Common abbreviations

Table 3 gives the notations used in the RAWFIE documents and deliverables.

Notation	Description
DX.Y	Deliverable X.Y from the DoW
MSX	Milestone X from the DoW
WP X	Work package X from the DoW
OCX	Open Call X
AX.Y	Activity number Y in Phase X
DLX.Y	Deadline number Y in Phase X
M X	Project month number X

Table 3: Notation

F Glossary

The RAWFIE glossary consists of generic terms, contributed by all partners.

A

Accounting Service

RAWFIE component. Component that keeps track of resources usage by individual users.

Aggregate Manager

Slice Federation Architecture (SFA) term. The Aggregate Manager API is the interface by which experimenters discover, reserve and control resources at resource providers.

Avro

Apache Avro: a remote procedure call and data serialization framework

B

Booking Service

RAWFIE component. The Booking Service manages bookings of resources by registering data to appropriate database tables.

Booking Tool

RAWFIE component. The Booking tool will provide the appropriate Web UI interface for the experimenter to discover available resources and reserve them for a specified period.

C

Common Testbed Interface

RAWFIE component. The set of software and hardware functionalities each Testbed provider should ensure, for the communication with Middle Tier software components of RAWFIE, therefore for the integration with the RAWFIE platform

Component

A reusable entity that provides a set of functionalities (or data) semantically related. A component may encapsulate one or more modules (see definition) and should provide a well defined API for interaction

D

Data Analysis Engine

RAWFIE component. The Data Analysis Engine enables the execution of data processing jobs by sending requests to a processing engine which will perform the computations specified when the analytical task was defined through the Data Analysis Tool to be transmitted to the processing engine for execution.

Data Analysis Tool

RAWFIE component. The Data Analysis Tool enables the user to browse available data sources for subject to analytical treatment as well as previous analysis tasks' outcomes.

E

EDL Compiler & Validator

RAWFIE component. The EDL validator will be responsible for performing syntactic and semantic analysis on the provided EDL scripts.

Experiment Authoring Tool

RAWFIE component. This component is actually a collection of tools for defining experiments and authoring EDL scripts through RAWFIE web portal. It will provide features to handle resource requirements/configuration, location/topology information, task description etc.

Experiment Controller

RAWFIE component. The Experiment Controller is a service placed in the Middle tier and is responsible to monitor the smooth execution of each experiment. The main task of the experiment controller is the monitoring of the experiment execution while acting as 'broker' between the experimenter and the resources.

Experiment Monitoring Tool

RAWFIE component. Shows the status of experiments and of the resources used by experiments.

Experiment Validation Service

RAWFIE component. The Experiment Validation Service will be responsible to validate every experiment as far as execution issues concern.

M

Master Data Repository

RAWFIE component. Repository that stores all main entities that are needed in the RAWFIE platforms. Is an SQL-database

Measurements Repository

RAWFIE component. Stores the raw measurements from the experiments

Message Bus

Also known as Message Oriented Middleware. A message bus is supports sending and receiving messages between distributed systems. It is used in RAWFIE across all tiers to enable asynchronous, event-based messaging between heterogeneous components. Implements the Publish/Subscribe paradigm.

Module

A set of code packages within one software product that provides a special functionality

Monitoring Manager

RAWFIE component. Monitors the status of the testbed and the UxVs belonging to it, at functional level, e.g. the 'health of the devices' and current activity.

N

Network Controller

Manages the network connections and the switching between different technologies in the testbed in order to offer seamless connectivity in the operations of the system.

L

Launching Service

RAWFIE component. The Launching Service is responsible for handling requests for starting or cancellation of experiments.

R

Resource Controller

RAWFIE component. The Resource Controller can be considered as a cloud robot and automation system and ensures the safe and accurate guidance of the UxVs.

Resource Explorer Tool

RAWFIE component. The experimenter can discover and select available testbeds as well as resources/UxVs inside a testbed with this tool. Administrators can manage the data.

Results Repository

RAWFIE component. Stores the results of data analyses.

Resource Specification (RSpec)

SFA term. This is the means that the SFA uses for describing resources, resource requests, and reservations (declaring which resources a user wants on each Aggregate).

Schema Registry

A schema registry is a central service where data schemas are uploaded to. As an added benefit each schema has versions with it can convert allowable formats to other ones (e.g.: float to double) It maintains schemas for the data transferred and keeps revisions to be able to upgrade the definitions as with the simple field conversion. Used in RAWFIE for messages on the message bus.

Service

A component that is running in the system, providing specific functionalities and accessible via a well known interface.

Slice Federation Architecture (SFA)

SFA is the de facto standard for testbed federation and is a secure, distributed and scalable narrow waist of functionality for federating heterogeneous testbeds.

Subsystem

A collection of components providing a subset of the system functionalities.

System

A collection of subsystems and/or individual components representing the provided software solution as a whole.

System Monitoring Service

RAWFIE component. Checks readiness of main components and ensure that all critical software modules will perform at optimum levels. Predefined notification are triggered whenever the corresponding conditions are met, or whenever thresholds are reached

System Monitoring Tool

RAWFIE component. Shows the status and the readiness of the various RAWFIE services and testbed

T

Testbed

A testbed is a platform for conducting rigorous, transparent, and replicable testing of scientific theories, computational tools, and new technologies.

In the context of RAWFIE, a testbed or testbed facility is a physical building or area where UxVs can move around to execute some experiments. In addition, the UxVs are stored in or near the testbed.

Testbeds Directory Service

RAWFIE component. Represents a registry service of the middleware tier where all the integrated testbeds and resources accessible from the federated facilities are listed, belonging to the RAWFIE federation.

Testbed Manager

RAWFIE component. Contains accumulated information about the UxVs resources and the experiments of each one of the federation testbeds.

Tool

A GUI implementation to do a special thing, e.g. the "Resource Explorer tool" to search for a resource

U

Users & Rights Repository

RAWFIE component. Management of users and their roles. Is a directory services (LDAP).

Users & Rights Service

RAWFIE component. Manages all the users, roles and rights in the system.

UxV

The generic term for unmanned vehicle. In RAWFIE, it can be either:

- USV Unmanned Surface vehicle.
- UAV Unmanned Aerial vehicle.
- UGV Unmanned Ground vehicle.
- UUV Unmanned Underwater vehicle.

UxV Navigation Tool

RAWFIE component. This component will provide to the user the ability to (near) real-time remotely navigate a squad of UxVs.

UxV node

RAWFIE component. A single UxV node. The UxV is a complete mobile system that interacts with the other Testbed entities. It can be remotely controlled or able to act and move autonomously.

\boldsymbol{V}

Visualisation Engine

RAWFIE component. Used for providing the necessary information to the Visualisation tool, to communicate with the other components, to handle geospatial data, to retrieve data for experiments from the database, to load and store user settings and to forward them to the visualisation tool.

Visualisation Tool

RAWFIE component. Visualisation of an ongoing experiment as well as visualisation of experiments that are already finished

W

Web Portal

RAWFIE component. The central user interface that provides access to most of the RAWFIE tools/services and available documentation.

Wiki Tool

RAWFIE component. Provides documentation and tutorials to the users of the platform.

References

- [1] Evaluation Research Team, *Brief 12: Using Graphs and Charts to Illustrate Quantitative Data*, Centers for Disease Control and Prevention, 2008, https://www.cdc.gov/healthyyouth/evaluation/pdf/brief12.pdf
- [2] Evaluation Research Team, *Brief 14: Data Collection Methods for Program Evaluation: Questionnaires*, Centers for Disease Control and Prevention, 2008, <u>https://www.cdc.gov/healthyyouth/evaluation/pdf/brief14.pdf</u>
- [3] Evaluation Research Team, *Brief 16: Data Collection Methods for Program Evaluation: Observation*, Centers for Disease Control and Prevention, 2009, <u>https://www.cdc.gov/healthyyouth/evaluation/pdf/brief16.pdf</u>
- [4] Evaluation Research Team, *Brief 17: Data Collection Methods for Program Evaluation: Interviews*, Centers for Disease Control and Prevention, 2009, <u>https://www.cdc.gov/healthyyouth/evaluation/pdf/brief17.pdf</u>
- [5] Evaluation Research Team, *Brief 19: Analyzing Qualitative Data for Evaluation*, Centers for Disease Control and Prevention, 2009, <u>https://www.cdc.gov/healthyyouth/evaluation/pdf/brief19.pdf</u>
- [6] Evaluation Research Team, *Brief 12: Analyzing Quantitative Data for Evaluation*, Centers for Disease Control and Prevention, 2009, <u>https://www.cdc.gov/healthyyouth/evaluation/pdf/brief20.pdf</u>